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ABSTRACT

We study mean convergence of ergodic averages + Eﬁ

20 fo rhnle) ()
associated to a measure-preserving transformation or flow 7 along the
random sequence of times kpn(w) = Z;:()l F(T’w) given by the Birkhoff
sums of a measurable function F for an ergodic measure-preserving trans-
formation T'.

We prove that the sequence (kn(w)) is almost surely universally good for
the mean ergodic theorem, i.e., that, for almost every w, the averages (*)
converge for every choice of 7, if and only if the “cocycle” F satisfies a
cohomological condition, equivalent to saying that the eigenvalue group

of the “associated flow” of F is countable. We show that this condition

holds in many natural situations.

When no assumption is made on F, the random sequence (kn(w)) is
almost surely universally good for the mean ergodic theorem on the class
of mildly mixing transformations r. However, for any aperiodic transfor-
mation T, we are able to construct an integrable function F' for which
the sequence (kn(w)) is not almost surely universally good for the class
of weakly mixing transformations.

1. Introduction

Let (2,7, ) be a standard probability space, T a measure-preserving transfor-
mation of this space which we throughout assume to be ergodic, and F a real
measurable function on it. For z real, we denote e(z) = exp(2irz). We study
the convergence of the averages

1 N-1 - )
(1.1) (N "220 e (0F (w)) oo’
where § € R, w € Q and F™ denotes the Birkhoff sum F(® = zz;é FoT*¥ of
F.

The behavior of such sums is related to the theory of real cocycles over measure-
preserving systems and their associated flows. As usual, the function F' will also
be called a cocycle.

Denoting by B the Borel o-algebra of the torus T = R/Z and by A the Lebesgue
measure on (T, B), we consider for each real 8 the skew product transformation
Ty F on the product space (2 x T, 7 ® B, u ® A) defined by

Ty r(w,z) = (Tw,z+ 0F(w)).



Vol. 130, 2002 RANDOM ERGODIC THEOREMS AND REAL COCYCLES 287

This is a measure-preserving transformation and it satisfies
Ty p(w,r) = (T"w,z + 9F™ (w)).

A direct application of the pointwise ergodic theorem to the function (w,z) —
e(z) gives: for every 8, the sequence (1.1) converges p-almost everywhere and in
any LP(u), 1 < p < co. Furthermore, if the skew product is ergodic, the limit is
zZero.

We are interested in the following question: can the set of full measure on
which the sequence (1.1) converges be chosen independently of 67

Definition: We call F a good averaging cocycle if there exists a subset Q' of
2 of full measure such that for all w € ¥ and for all § € R the sequence (1.1)
converges.

This “good averaging” property is related to the mean ergodic theorem
along random sequences since, in case F' takes integer values, there is equivalence
between:

e F'is a good averaging cocycle;

o for p-almost every w, the sequence (F(™(w)) is a good sequence for the
mean ergodic theorem, that is to say, if (X, A, v, 7) is any invertible proba-
bility measure-preserving system, if 1 < p < oo and if f € LP(v), then the
sequence

1 N-1
(12) (_N_ Z f ° TF(M(W))
n=0

converges in LP(v).
When F' takes real values there is a similar equivalence for measure-preserving
flows (X, 1) (see Section 3).

In this paper we study the good averaging property, we give a variety of
examples, and we investigate this random mean ergodic theorem. Similar
questions have already been studied in [23] and [14]. A general reference for
ergodic theorems along subsequences is [33].

Here is a summary of our results.

The good averaging property is not satisfied in general but it is satisfied in
some interesting situations; in particular, in each of the following cases F is a
good averaging cocycle:

e I is a regular real cocycle;
¢ I is integrable with non-zero mean, and more generally when its associated
flow preserves a probability measure;



288 M. LEMANCZYK ET AL. Isr. J. Math.

e the process (F o T") is independent;
o the process (F o T") is Gaussian;
o the dynamical system (€2, T, u, T') possesses a hyperbolic character and F
is sufficiently regular.
Furthermore, the limit of (1.1) is zero for all # # 0, and the limit of (1.2) is
the limit of the usual ergodic averages, in some of these cases, namely when:
e F is an ergodic real cocycle;

the process (F o T") is independent and F does not take its values in a
subgroup aZ;

e the process (F o T") is Gaussian and F is not a coboundary;

e the associated flow of the cocycle F' is weakly mixing.

We obtain a complete characterization of the good averaging property: F is a
good averaging cocycle if and only if either F is a real coboundary, or the set of
all 6 such that 8F is a coboundary modulo 1 is countable, that is the associated
flow of F' has countably many eigenvalues (Theorem 4.1).

Since not every function F is a good averaging cocycle, another question can
be asked: under which assumption on the dynamical system (X,.A,v,T) does
the sequence (1.2) converge, whatever be F' and f? We prove that given any
F, for p-almost every w, we have: for any mildly mixing system (X, A, v, 7) and
any f € LP(v), the sequence (1.2) converges in LP(v). On the other hand, for
any aperiodic ergodic system (2, 7", i, T), there exists an integrable function F
such that, for p-almost all w, there exists a weakly mixing system (X, A,v,T)
and f € L?(v) such that the sequence (1.2) does not converge. This means that
there always exists a universal set of measure one for the random mean ergodic
theorem on the class of mildly mixing systems, and there can be no such set for
the class of weakly mixing systems.

We should add that the problem of mean convergence of averages (1.2) is quite
different from the problem of pointwise convergence. For example, it is proved
in [23] that if the random process (F o T™) is independent, centered and square
integrable, then for almost all w and for any choice of (X, A, v, ) there exists
a bounded measurable function f on X such that the averages (1.2) do not
converge almost everywhere. But these averages do converge in the mean (see
[23] Section 7, or the present paper, Section 6). Other examples enlightening the
great difference between problems of mean and pointwise convergence are given
in Section 7.

The case of non-negative integrable functions and the case of integer-valued
non-centered functions F have already been studied. In these cases, the strongest
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result of v-almost everywhere convergence of the averages (1.2) is proved in [23].
Just a word on the method used in [23]: it is based on the return-times ergodic
theorem, in the discrete and in the continuous time cases, and some subtle con-
structions. We are studying here only mean convergence and in this setting the
return-times theorem is nothing else than the classical Wiener-Wintner ergodic
theorem. The approach proposed in this paper will be quite different.

Let us notice finally that the only assumptions on the system (X, A, v, 7) that
we will make are on the spectral level, and therefore our results on the random
mean ergodic theorem extend to any representation of Z (or R) in the unitary
group of a Hilbert space.

2. Sets of critical values associated to the function
For each 6 € R, let

lo(w) = e(0F™(w)),

||[\ﬂ2

which is well defined a.e. and in L2(p), as we already noticed. This limit function
satisfies the transfer equation

£6(Tw) = e(~0F (w))o(w).

Recall that we assume that T is ergodic. Thus |f| is a.s. constant and if it is
not zero then F' is a coboundary modulo 1, i.e., there exists a real measurable
function G on Q with § F(w) = G(Tw) — G{w) mod 1 a.e., and such a function G
is called a transfer function.

We moreover have, almost everywhere, £g(T"w) = e(—0F ™ (w))fg(w) for every
n >0, so

1 N-1 [ N1
Z £(T"w) = Lo(w) 57 D_ e (—6F™ (w)),
n=0 n=0

which implies, by the ergodic theorem,

(2.1) Eltg] = |ls|* aee.

Definitions:
e We denote by Op the set of real numbers 6 such that £g # 0 a.e. or
equivalently E[¢y] # 0.
e We denote by Ap the set of real numbers # such that F is a coboundary
modulo 1.
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Notice that ©p C Ap. We shall need basic properties of Ag, which come back
to [6], [17], [25]. Namely, Ar is a Borel subgroup of R and it can be endowed
with a natural Polish topology, which we describe at the end of this section; it
is also equal to the eigenvalue group of the so-called associated flow (or “Mackey
range”) of F (see Section 5). If F is a real coboundary, that is if there exists
a measurable real function G on Q such that F(w) = G(Tw) — G(w) a.e., then
Ap =R The converse is true (see Section 3).

The next results give a first link between these sets and the good averaging
property.

THEOREM 2.1: For p-almost every w,

N-—
2.2) forall 0¢Op,  lm — Z (HF(“)(w )

The proof of this theorem is based on the Van der Corput inequality and the
following proposition.

PROPOSITION 2.2: Let G be a real measurable function on ). For p-almost
every w,

N-—
(2.3) forallf €R,  lim Z (0G(T"w)) = E[e(6G)].

In particular, if F(w) = G(Tw) — G(w) a.e., then for almost every w we have
F®)(w) = G(T™w) — G(w) for every n, so we obtain the following immediate
corollary.

COROLLARY 2.3: If F is a real coboundary, then it is a good averaging cocycle.

Proof of Proposition 2.2: By the pointwise ergodic theorem, there exists a subset
' of Q, with u(2) = 1, such that for any rational number # and any w in €’
convergence (2.3) holds. By density we just need to prove that for almost every
w the sequence My: R - C, N =1,2,... defined by

2

1

M3 (0) =y 3 el0G(T")

IIM

is equicontinuous.
For each positive integer K, let nx be the characteristic function of the set
[|G] > K], and let xx = 1 — nk. Since T is ergodic, for each K we have for
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almost all w

N-1
.1 "
(2.4) A n§:0 nk (T"w) = Elnk].

Let us fix w for which (2.4) holds for every K. We want to show that for every
€ > 0 there is a § > 0 so that if |¢ — 6’| < 6 then for every N

|M5 () — M (0] <e.

Since for each fixed N, My is continuous, we just need to find a § which works
for every large N. Let us write

N-1
M(6) ~ My (#) =5 3 xx(T"0)(e(6G (™)) — (¢ G(T"w)))
n=0

N-1
bo Y (T ) (EG(T)) — 0 GT™)).
=0

We can choose K so that E(nkx) = p([|G] > K]) < ¢/4 and then, because of
(2.4), we can choose Ny large enough so that if N > Ny the absolute value of
the second term is less than €/2. The first term can be made less than ¢/2 by
choosing 0 small enough because of the uniform (in n) estimate

k(T "w)e(0G(T"w)) — e(M'G(T"w))| <27 -1 - 0| K. &

Proof of Theorem 2.1: The proof is based on the classical Van der Corput
inequality (see, for example, [22, A71.3]), which implies that if (2n)n>0 is a
sequence of complex numbers such that, for any integer h > 0,

1 V-l

= lim — E WUyt Uy

Vh N—oo N 0 nthtn
n—

exists and satisfies

| 2ol
lim — =
Hgnoo H Th 0
h=0
then
N-1
Jim 3y 2 e =0
=

By Proposition 2.2, we know that, for aimost all w, for any 2 > 0 and any 6,

N-1

dim % :L:‘o e (HF(")(T"w)) ~Ele (9F<h>)] .
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Let us apply Van der Corput’s argument to the sequence u,, := € (HF (”)(w)). We
have

and
] H-1 | o1 "
i, g7 =5 i 7 30 ®)
h=0 h=0
which is equal to zero if § ¢ Op. |

COROLLARY 2.4: If the set O is countable, then F is a good averaging cocycle.
Proof of Corollary 2.4: We know that for each 6 € O there exists a subset §2g
of © of full measure such that for any w € {2y the sequence (1.1) converges. 1

We finish this section by the description of the natural topology of Ar. This
topology is inherited from the ordinary topology on R and from the L2-topology
on the transfer functions. More precisely, to each § € A we choose a measurable
transfer function Gy from € into the torus T corresponding to §F(w) (mod 1).
Then, we define the metric d on Ag by

d9,0):=10-6¢|+ irelllft (/ le(z + Gg) — e(Ggr)|? du)
x Q

)%

(note that this expression does not depend on the choice of Gy, Gy since e(Gy)

=|0—0’|+(2~2

/ e(Go — Go')dp
Q

is determined a.e. up to a constant).

This metric gives to Ar the structure of a separable complete topological group,
in other words A is a Polish group.

Now, O is an open neighborhood of 0 in Ap. Indeed, for every 6 € Ap, we
have

N-1

to(w) = Jim 1 Y e(GolI™) — Galw)) = ¢ (~Go(w) [ e(Ga)dn ae,

n=0
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whence
(25) 1) = [ [ e du‘ ,

and 6 — |£g] is continuous in the topology of Ap.

In particular Ap is a countable union of translates of ©p. As Op is clearly a
Borel set, it follows that Ap is a Borel subgroup of R. It also follows that O is
countable iff Ar is countable.

3. The random mean ergodic theorem for mildly mixing systems

To begin, we recall in a general setting the link between convergence of trigono-
metric averages and the mean ergodic theorem along subsequences. A sequence
of real numbers (a,)n>0 is called a good averaging sequence if for every real
number # the sequence of the averages

1 N-1
(3.1) ~ > e(8an)

n=0
converges.
PROPOSITION 3.1: Let (a,) be a good averaging sequence and p € [1, +00).

If (ay) is a sequence of integers then, given any invertible probability measure-
preserving system (X, A,v,7) and f € LP(v), the sequence

(3.2) (% g i OT%>

converges in LP(v).
Given any probability measure-preserving flow (X, A, v, (1)er) and f € L?(v),
the sequence

| N2
(3.3) <-ﬁ Y fo Tan>
n=0
converges in L¥(v).

These results are well known. In order to be complete, and because it was
an important part of our initial motivation for the study of (1.1), we recall the
proof in the case of an integer-valued sequence and a measure-preserving trans-
formation. The argument can be repeated word for word in the case of a real
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sequence (a,) and a measure-preserving R-action (then the spectral measure in
the argument below is defined on R).

Proof of Proposition 3.1: If f € L*(v) and oy denotes the spectral measure of
Jf under 7, then

1N-—l K
HTv,Z%“T“"“f?
N-— K-

Z Han—fz e(fax)

Since (ay,) is a good averaging sequence, by the dominated convergence theorem

2

2
dog(6).

and the Cauchy criterion, we obtain the convergence of (3.2) in L2(v). For
bounded functions f, the sequence (3.2) converges in probability and is uniformly
bounded, hence it converges in LP(v). The result follows by density of L™ in L?.
|

Remark 3.2: 1In case when the limit of the averages (3.1) is zero for any non-zero
real number 6, i.e., when the sequence (a,8) is uniformly distributed mod 1 for
any non-zero real number 6, the limit of the averages (3.3) is the limit of usual
ergodic averages and the sequence (a,,) is a Poincaré recurrence sequence ([12]).

Following Furstenberg’s classical argument, this property has consequences in
combinatorial number theory. This remark, which is very well known in its
statement for integer-valued sequences (a,), is developed in a short appendix
(Section 9) for the real case.

The proof of Proposition 3.1 shows that, given (X, A,v,7) and f € LP(v), the
conclusion holds if the averages (3.1) converge os-a.e. Therefore, from Theorem
2.1 we obtain a spectral condition on (X, A, v, 7) for the validity of the random
mean ergodic theorem.

ProprosITION 3.3: Given any integer-valued cocycle F, there exists a subset §'
of Q of full measure such that, for any w € (', we have: if o denotes the maximal
spectral type of the system (X, A, v, ) in the orthocomplement of the constant
functions in L?(v) and 0(©F) = 0, then for each f € LP(v), the sequence (1.2)
converges in LP(v) to the integral of f.

The similar statement holds for real-valued F and measure-preserving flows.

Remark: 1If we are looking for explicit constructions of “good sequences of times”
for the mean ergodic theorem, we can remark that, in the case when T is a
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uniquely ergodic transformation of the regular measure space (2, T, ) and F is
continuous, we can choose ' = Q in the statement of Proposition 3.3. This is so
because, in that particular case, the universal set ' for § ¢ O is the set where
the ergodic averages of the continuous functions e(§F*)(.)) converge (proof of
Theorem 2.1).

The next results give us precise information on the possible size of the Borel
subgroup Ap. In [17] and [6] it is proved that

(3.4) esther the set Ap has Lebesgue measure zero, or F' 1s a real coboundary.

In fact, much more is known. Moore and Schmidt in [25] gave a considerable
strengthening of this result. To formulate their result let us recall the definition
of a full measure on R, which appears in [25]: a Borel probability measure o on
R is full if limsup,_, ., |5(t)| < 1.

THEOREM 3.4 ([Moore and Schmidt)): If a full measure is concentrated on Ap
then F is a real coboundary and Ap = R.

In other words, if F' is not a real coboundary, then Ap is a weak Dirichlet
subgroup (see [19], where the more precise result that Ap is “saturated” is
shown). Although Theorem 3.4 is not original, we propose a new short proof,
whose first argument will be used later.

Proof of Theorem 3.4: We first notice that there exists a real measurable
function G on Ap x € such that, for each 8 € Ap, for g-almost all w,

(3.5) 60F (w)=G(#,Tw) — G(,w)mod 1.

Indeed, as the averages in (1.1) are measurable functions of (6, w), we can choose
the measurable function G on Op x © such that e(G(f,w)) = Lo(w)/|le(w)]
whenever the limit g(w) exists and is non-zero (and, e.g., we let G(8,w) = 0)
otherwise). So (3.5) holds p-a.e. for each § € Bp. Consider then a countable
Borel partition (A,,) of Ap, where Ag = O and each A,,, n # 0 is the translate
of a part of O by some 6, € Ap (which is possible because O is open in Ap).
For each n # 0, we choose a transfer function Gy, for 8, F, and we define G on
A, x Q by
G0, ) = Ga, () + G(6 — 6, ).

Now, suppose that a full probability measure o is concentrated on Ar and fix
€ > 0 such that

(3.6) limsup |5 (t)] < 1 — 3e.

t—co
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Then the map w + g,, := e(—G(:,w)) is measurable from 2 into L'(s) and there
exists a measurable subset A of positive measure in €2 such that

(3.7) for all w, w' € A, /lgw — guldo < e.

We fix wg € A and we associate to every w the Fourier transform ¢,, defined on
R by

bult) = / 00(6) 90 (De(~6)do (6).

The set of (#,w) satisfying (3.5) is measurable. So, by the Fubini theorem, we
have, for p-almost all w, for o-almost all 6,

e(0F (w)) - 97w(0) = 9u,(6),
and, after Fourier transform, this gives
(3.8) pru(t) = du (t + F(w)).
On the other hand, by (3.7), we have
(3.9) forallw e A, |5(t) — ¢u(t)| <e.

The Fourier transform g — [t — [ g(8)e(—t8)do(8)] is continuous from L'(o)
into the space of bounded continuous functions on R equipped with the uniform
norm. Hence the map

M (w) := sup |¢u (t)]
teR

is measurable on 2. But, by (3.8), the map M is T-invariant, hence it is a.e.
constant, and by (3.9) we have

M >suplo(t)|—e=1—c¢
teR

Similarly, by (3.8), (3.6) and (3.9),

limsup |4, (t)| is a.e. constant and < 1 — 2e.
t—too

This implies that the real function
G(w) :=sup{t € R: |, (t)] > 1 —¢€}

is almost everywhere defined, and it is measurable, again by the continuity of the
Fourier transform. By (3.8), we have

G(Tw) = G(w) — F(w)
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and the proof is finished. |

We give now an application of Theorem 3.4 to the random mean ergodic
theorem. For simplicity, we discuss here the case of an integer-valued function
F, but all can be extended to the real case.

Recall that a measure-preserving system (X, A, v, 1) is mildly mixing ([13],
[12], [1], [31]) if it has no rigid factor. Equivalently, if o denotes the maximal
spectral type of T in the orthocomplement of the constant functions in L%(v),
then each probability measure absolutely continuous with respect to o is full. A
strongly mixing system is mildly mixing and mild mixing implies weak mixing.

THEOREM 3.5: For p-almost w, we have: for each mildly mixing measure-
preserving system (X, A, v, 1), for each 1 < p < +oc and f € LP(v) the sequence

<1N—1 (n)
_ZfOTF"(w)
Nn:O

converges in LP(v). Moreover, if F' is not a real coboundary then the limit of this
sequence is [y f dv.

Proof of Theorem 3.5: If F is a real coboundary, the result is given by Corollary
2.3 and Proposition 3.1. If F is not a real coboundary, Theorem 3.4 implies
that there does not exist any measure absolutely continuous with respect to the
maximal spectral type o of 7 concentrated on Ap; so 6(Ar) = 0, hence 6(Ofp) = 0
and Proposition 3.3 applies. |

Remark: We will show later that the class of r for which this random mean
ergodic theorem holds universally does not contain all weakly mixing transfor-
mations.

The previous result holds in particular for all strongly mixing dynamical
systems (X, .A, v, 7). This can be seen as an application of Rosenblatt’s study of
norm convergence in [32]. Indeed, it is possible to prove that, for almost every,
w the sequence of probability measures given on Z by

1 N-1
5 3 (W)

(where 6(t) is the Dirac mass at point t) is uniformly dissipative and hence the
norm convergence of (1.2) when 7 is strongly mixing is the generalization of the
Blum-Hanson theorem given in [32].
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4. A complete characterization

THEOREM 4.1: F' is a good averaging cocycle if and only if either it is a real
coboundary or Ag is countable.

We just have to show the necessity of the condition. Indeed, the fact that it is
sufficient follows from Corollaries 2.3 and 2.4. We will proceed in several steps
that we can summarize in the following way: under the good averaging hypoth-
esis, we prove the existence of a measurable selector of the transfer functions for
the mod 1 coboundaries F, 6 € Ag, which is continuous and homomorphic with
respect to #; then, we show that convergence in Ap implies uniform convergence
on a set of positive measure and, using a theorem of Rosenthal, we deduce that
Ar is locally compact, and we conclude.

From now on we suppose that F is a good averaging cocycle. The function £y
is defined as in Section 2. We will denote £(0,w) := £g(w). For almost all w, the
function £(-,w) is well defined everywhere and £(0,w) = 1.

LEMMA 4.2: For almost all w, the function £(-,w) is continuous on Ap.

Proof of Lemma 4.3: By a standard representation theorem, considering for
example the sample space of the process (F o T™), we can always assume that
Q is a Polish space, equipped with its Borel g-algebra and a regular probability
measure g, and that the transformation T and the function F' are continuous.
For N > 0 and (§,w) € R x Q we define

N-1

vl w) = —;f- > e (0P (w)).

n=0
Thus we have a sequence (£y) of continuous functions on R x © and hence the
more so on Ap x Q. There exists @' C Q with u(Q') = 1 such that for all
(0,w) € R x ' the limit
£(0,w):= lim ¢y(0,w)

Noo

exists. We can suppose that ' is T-invariant and we have
(4.1) £(0,Tw) = e(—6F (w))¢(#,w) on R x .

Furthermore, by (2.5), there exists an open neighborhood Uy of 0 in Ap on
which |£5| > %, that is £(6,-) has a (a.e.) constant modulus > 1if 8 € Up.

Let K be a compact subset of ' with x(K) > 0 and such that K is equal to
the topological support of the restriction of u to K. The product space Uy x K
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equipped with the Ap X £-topology is a Baire space, since it is open in the
complete metric space Arp x K. On this space, the function £ is the limit of a
sequence of continuous functions.

Let 0 < € < ;. By the Baire Theorem (e.g., [28], Theorem 7.3), there exist
non-empty open subsets U’ C U and A C K such that, for any 6,6’ € U’ and

any w, w € A,
(4.2) |60, w) — £(0',w")| < e.

We fix 6y € U’ and find wq € A such that |[£(fg,wo)| > 5. By (4.2), for all § € U’
and allw € A we have |¢(f,w)| > § and, by (4.1), this implies that, for all § € U’
and all w € Q" :=J,,5, T "4,

(4.3) 1£(6,w)] > 1/4.

Thanks to our assumption on the support of yx we have u(A4) > 0, hence Q"
is of full measure. We put U := U’ — 8y which is a neighborhood of zero in Ar,
and, for any (6,w) € U x ", we define G.(f,w) € T by

O+ b, w) .lﬁ(eo,w)l

Gl = T ) o)

Then for any w € Q" and any 6 € U,
G(0,Tw) = 0F (w) + G(f,w) mod 1,
and, by (4.2) and (4.3), for any w € A and any 0 € U,
11— e(Ge(6, w))| < 8e.

Now, we want to increase the measure of the set A. Let m be a positive integer
such that u(UZ:Ol T %A4) > 1 —¢and let M > 0 be such that g([|F] > M]) <
e/m. Define

A= (ET"“[IFI < M]) N (gT*kA>

and

Ue=Un (- —0—).

U, is a neighborhood of zero in Ar and, for any w € A,, for any 0 € U,, we can
choose k (0 < k < m) such that T*w € A, whence

11— e(Ge(8,w))] < |1 — e(Ge(8, T*w))| + |1 — e(0F®) (W)} < 8e + kM) < e,
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and we moreover have p(Ae) > 1 — 2e.

We now consider a sequence (ex) of positive numbers such that Y7, ex < %
and we put Uy, := U, , Ay = Aq,, Ao :=)y>; Ak and Gy := G,. We denote by
Ajp the set of w € Ay such that, for any & >1,

N-1
. 1
Aim Zo X, (T"w) = p(Ak) > 1 - €.
n=
Then u(Ay) = pu(Ae) > 0. We are going to show that, for every w € Ajp, the
sequence of functions £y (-,w) is equicontinuous on Ap.
Fix w € Aj. For any given & > 0, there exist k& > 1 such that ¢ < § and
Ny > 0 such that, for N > Ny,

1 N-1
5 ) x4, (Tw) > 1 - 26,

n=0

Then, for every N > Ny and every 6,6’ € Ap with 8 —8' € Uy,

N-1
1 " (n
[en(8,w) - En (0, 0)| <5 le((6 - 6" F™ (w)) - 1
n=0
1 N-1
=5 3 e(Gh(0 - 0/, T"w)) = e(Gr(0 — 8, )
n=0
) N-1
<% 2 (1= x4, (T"w)) + 36me, < 1185.

Il
=]

n

This proves the equicontinuity property, and it implies that, for every w € Ay,
£(6,w) is a continuous function of # on Ar. But, by (4.1), the set of w’s satisfying
this property is invariant under T'. Hence this set is of full measure and Lemma
4.2 is proved. |

LEMMA 4.3: There exist a T-invariant set ¥ of full measure and a measurable
G: Ap x ' — T such that for every w € ¥, 6, 0’ € Ap

(44) GB,Tw) =0F(w)+G(H,w), GO+ ,w)=GO,w)+GH,w)modl
and, moreover, for every w € §', the function § — G(#,w) is continuous on Ap.

Proof of Lemma 4.3: We start from the conclusion of Lemma 4.2. For € Op,
the function |£(6,-)| is a.e. equal to a positive constant. Using the separability
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of ©F and the continuity of 8 — £(0,w), we obtain that there exists a set of full
measure ¥’ such that, for every w € € and every 6 € Op, £(6,w) # 0. We may
also assume that the transfer equation holds everywhere on Op x .

We construct a measurable selector G for the transfer functions on Ap x "
as in the proof of Theorem 3.4, starting with e(—G(8,w)) = £(A,w)/|£(,w)| on
OF x €Y. We consider again a countable partition (A,) of A, such that Ag = OF
and for each n # 0 there exists 0, € Ap with A, — 6, C Op, and we let

G(0,-) =G, () +G(6 —bn,) ifO€ A,

where Gy, is a transfer function (mod 1) for 8, F.

Now, there is a subset of Q" with full measure on which G(-,w) is continuous
on each A, and the transfer equation G(6,Tw) = 0F (w) + G(6,w) mod 1 holds
for every 6 € Ap. This equation implies that, for all 8,6’ € A,

GO +0 . w)— GO,w)—GH w)

is p-almost everywhere equal to a constant ¢(f,8'). For any choice of n, n', n”,
let us denote Cyp, p v := {(6,6') € A, X Apr: 0+ 60" € Ay}, In each non-empty
Cnn' nv, we choose a countable dense subset, and we denote by D the union of
all these subsets. There is a further subset €’ of full measure of " such that,
for all w € @, for all (6,6') € D,

(4.5) GO +0,w) — G0, w) — GO, w) = c(6,6').

Since, for all w € ', G(-,w) is continuous on each A, and thanks to the choice
of D, this implies that, for all w € &, the identity (4.5) is true for all §,60' € Ap.
Now we can pick any wg in ' and replace G(f,w) by G(0,w) — G(#,wo). This
transfer function satisfies (4.4).

Moreover, for every w € ', G(-,w) is continuous on ©p, which is a neighbor-
hood of 0. Hence this homomorphism is continuous on all Ag. |

Now, we are able to show that the convergence in Ap implies the uniform
convergence of the transfer functions G(f,-) on a set of positive measure. In
order to obtain a topological equivalence, we moreover have to take in account
the usual R-convergence. We shall do that by using the correspondence between
transfer functions and eigenfunctions of the associated flow described in the next
section, but note that the functions we construct here are everywhere defined.

To each 6 € Ap, we associate the modulus one function gy defined on €' x [0, 1]
by

go(w,t) = e(G(6,w) + 6t).
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We denote by A the multiplicative group
A={gp:0€Ar}

and by A the Lebesgue measure on [0, 1].

LEMMA 4.4: There exists a measurable subset A of 1 with positive measure
such that the topology of L?(A x [0,1], 4|4 ® ) and the topology of uniform
convergence on A x [0,1] coincide on A, and such that, if A is equipped with this
topology, then the map 8 — gy is a topological group isomorphism.

Proof of Lemma 4.4: For n > 0, let B, be the closed ball of radius 1/n centered
at 0in Ap. Given € > 0, since B, is separable and each e(G(-,w)) withw € V' is a
continuous character of Ag, the set A, . of all w € ' such that [1—e (G(8,w))| <
¢ for every 6 € B,, is measurable, and moreover

| 4ne =2

n>0

Let (ng) (k > 0) be a sequence of positive integers such that

> (N An ) < 1
k>0
and let A = (A, 1/5- Then p(A) > 0 and, when d(8,0) < 1/ny, we have
|1 —e(G(8,w)| < 1/k uniformly on A.
We also know that if 8, — 0 in Ar then #,, — 0 in R. Hence, if §,, — 0 in Ap,
then gg, — 1 uniformly on A x [0,1].
Conversely, let us suppose that gs, — 1 in L?(u|4 ® A). We have 6, — 0 in R
and G(6,,-) - 0in L?(u|4). Indeed, denoting by 4 the conditional probability
with respect to A, it is easy to verify that

/ / 11— gp, (w,t)|*dpalw)dt > max(@%,/ 11 - e(G(On,w)) 2 dpa(w)).
0 J4 A

Using the transfer equation, we deduce that, for any & > 0, we have G(8,,-) = 0
in L2(pt|-x 4)- By ergodicity of T we conclude that G(0n,-) — 0 in L*(u). The
sequence (8,,) goes to zero in Ap. |

The next step of the proof is a general theorem of independent interest.

THEOREM 4.5: Let (A, A, v) be a probability space and A either a multiplicative
subgroup of measurable functions of modulus one on A or an additive subgroup
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of real bounded measurable functions on A. If the L*-topology and the topology
of uniform convergence coincide on A, and A is closed in these topologies, then
A is locally compact.

We give the proof of the theorem in the multiplicative case, which is more
difficult and is the one we need. For the additive case, we need only make
obvious simplifications.

Proof of Theorem 4.5: We will make use of a result of Haskell Rosenthal in
functional analysis ([34]). In a real Banach space, a sequence (f) is said to be a
Sidon sequence if there exists § > 0 such that, for every finite sequence of real
coefficients ¢, we have

(4.6) “ZCkka 28 lekl.

If (fx) is a Sidon sequence then its span is isomorphic to £!. Rosenthal’s theorem
asserts:

In a real Banach space, every bounded sequence contains either a weak Cauchy
subsequence or a Sidon subsequence.

We will apply this theorem in the Banach space of bounded real functions
defined on A, equipped with the uniform norm. Note that, in this space, a weak
Cauchy sequence converges pointwise and thus, by the dominated convergence
theorem, it converges in the L2(v)-norm.

Denote by A’ the image of A by the lifting e(f) — 6 € [~3, 3) and denote by
B(r) the closed ball or radius r centered at 0 in A’ for the uniform norm. From
our hypothesis we deduce that, in the ball B(1/4), the L2-convergence implies
the uniform convergence.

Let € € (0,1/2). If m is a positive integer and if f/m € B(e¢/m), then f € B{e).
We claim that if the ball B(¢) can be covered by a finite number of subsets of
diameter less than ¢/2 then the ball B(e) is precompact, i.e., B(e) can be covered
by a finite number of balls of arbitrary small radius. Indeed, if the ball B(e)
can be covered by a finite number of subsets of diameter less than ¢/2%, then it
can be covered by a finite number of balls of radius ¢/2* and the ball B(e/2*)
can be covered by a finite number of subsets of diameter less than €/4% (take
the preimage of the covering of B(e) under the map f — 2%f), hence B(¢) can
be covered by a finite number of subsets of diameter less than ¢/4F. Our claim
follows by induction.

Now, assume that none of the B(27*) is precompact. We construct inductively
an infinite sequence (fg) in A’ with 27% f; € A’ for every k and || f, — fjlloo > 1/8
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for every i # j. Pick any fo in A’. Suppose fg, ..., fx—1 are chosen. By the
previous claim, we can find go, ..., g in B(2~%*+1)) such that ||g;—g;|cc > 2~ (F+?)
whenever ¢ # j. Then no pair among the 2ng ’s can be in the same subset of
diameter 1/4, so we can choose j such that the distance of fx := Zkgj to each f,,
i<k, is>1/8.

By construction, the sequence (fx) has no uniformly convergent subsequence;
thanks to our preliminary remarks, we know that this sequence has no weak
Cauchy subsequence. By Rosenthal’s theorem, the sequence (fi)x>2 has a Sidon
subsequence, which we still denote by (fx)r>2. We fix § > 0 such that (4.6)
holds. Note that, for every k, we have 27%f;, € A’.

Consider a finite random sum > €T € [f;, where (¢;) is an independent random
sequence of 1 with equal probabilities. We have

B(|Sus]) = 5( S ot i) =Sl

jeJ 1,7€J jedJ
It follows that there exists a deterministic sequence (€x)k<j<k+2+ such that

k42F

Z €ifs

j=k+1

< 2F/2,
2

and we define
k+2*

gk ‘= 2_k_1 Z ejfj.
7=k+1
Since 27%~1f; € A’ for j > k, we have g, € B(1/4). Moreover the sequence (gx)
goes to zero in L?-norm, but, by the Sidon property,

lgrlloo = 6/2.

This contradicts our hypothesis. We conclude that some closed ball B(27*) is
precompact. In the complete metric group A there exists a closed precompact,
hence compact, neighborhood of zero. This proves that A is locally compact.
|

Proof of Theorem 4.1: Assume that F is a good averaging cocycle. By Lemma
4.4 and Theorem 4.5, A is locally compact. Now, a locally compact group which
is continuously embedded in R is either discrete or equal to R (e.g., [35], Theorem
3.2.2). In the former case, it is countable, since it is separable, and in the latter
case we know that F is a coboundary. |
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Thanks to Theorem 4.1 we have explicit examples of functions which are not
good averaging cocycles. One now classical construction has been given by
Osikawa ([27]) of a cocycle F such that Ap is uncountable and which is not
a coboundary. It is described in Aaronson’s book (|1, §2.6]). In this example the
dynamical system (2, T, u,T) is an odometer and the cocycle is positive.

5. Some links with the theory of real cocycles

In this section, we describe some relations between the concept of regular
cocycle, the concept of associated flow and the good averaging property.

Let the space {2 xR be equipped with the infinite measure y® A where A denotes
the Lebesgue measure on R. Given a real cocycle F' on €, the corresponding
cylindrical flow TF is the skew product defined on Q2 x R by

Tr(w,z) = (Tw,z + F(w)),

and F is said to be ergodic if TF is ergodic.
Following [36], a real number « is called an essential value of a cocycle F if,
for all € > 0, for all B € T with u(B) > 0, there exists an integer n > 0 such that

w (BHT'”BH {w €N F™M(w) —al < e}) > 0.

The set. E(F) of essential values of F is a closed subgroup of R and it is known
that F is ergodic if and only if F(F) = R. The cocycle F is called regular if it
is cohomologous to a cocycle with values in the set of its essential values, that is
if there exists a real measurable function G on €2 such that, for y-almost all w,
F(w)+ G{w) ~ G(Tw) € E(F). In that case, this new cocycle defines an ergodic
extension of (0, T, u,T) by E(F).

PROPOSITION 5.1: Any regular real cocycle is a good averaging cocycle.

Proof of Proposition 5.1: If 8§ € Ap, there exists a real measurable function Gy
such that Go(Tw) = §F(w) + Gg(w) mod 1; the function (w, z) — e(Gy(w) ~ 1)
is Tp-invariant.

If Tr is ergodic, that is if E(F) = R, this implies that Ap = {0}.

If E(F) = aZ, with a € R and a # 0, then F is cohomologous to a cocycle F’,
with values in aZ, which defines an ergodic extension of (2, T) by aZ. As in the
above case, we conclude that Ap = Ap = a~'Z.

In the case where F(F) = {0}, the fact that the cocycle is regular means that
it is a real coboundary, and the result follows from Corollary 2.3. |



306 M. LEMANCZYK ET AL. Isr. J. Math.

Remark: If F' is ergodic, since Ap = {0}, we have moreover that the sequence
(1.1) converges to zero for every 8 # 0, for almost every w, hence the limit in the
mean ergodic theorem along the random sequence (F(™(w)) is a.s. the same as
the limit in the usual ergodic theorem.

Ergodicity of cocycles, in particular over irrational rotations, is a widely studied
subject (e.g., [3], [4], [7], [10], [18], [20], [24], [26], [29, 30]).

Non-ergodic real cocycles (for example, positive ones) have non-trivial asso-
ciated flows, and the eigenvalues of this flow are connected with our previous
discussion. Let us recall the definition of the associated flow, as it appears, for
example, in [17] or [2]. On 2 xR, the cylindrical low Tp commutes with the flow
(7¢)ter defined by translation on the second coordinate: 7¢(w,z) = (w,z+t). We
consider the o-algebra I of Tr-invariant measurable subsets of £2x R and we con-
sider on R a probability measure v equivalent to the Lebesgue measure. The non-
singular action of R given by the flow (7;) on the measure space (2 xR, Z, p®v)
is the flow associated to the cocycle F (this flow is also called “Mackey range”).

If the cocycle F is non-negative, the associated flow is isomorphic to the special
flow built over the base (Q,7,u,T) under the function F. If moreover F is
integrable, this flow preserves a finite measure.

The following result is well-known ([17]} but we will give here a short proof
because it is central in our analysis.

ProprosITION 5.2: The set 2w Ap is the set of L™ -eigenvalues of the associated
flow.

Proof of Proposition 5.2: Let 8 € Ap. There exists a real measurable function
G on Q such that §F = G — G o T mod 1. The function % defined on 2 x R by
h(w,z) = e(G(w) + 8z) is Tp-invariant, thus it is Z-measurable. But we have
h oy = e(ft)h, which implies that 276 is an eigenvalue of the associated flow.

Conversely, if 278 is an eigenvalue of the associated flow, then there exists a
non-zero Z-measurable function & on 2 x R such that h(w,z +t) = e(0t)h(w, z)
a.e. The Z-measurability means h(Tw,z + F(w)) = h{w,z) a.e. These two
equations yield h(w, z) = e(0F(w))h(Tw, z) a.e. For almost all z, this is true for
p-almost all w, and we can choose z such that it holds u-a.e. and the function
h(-,z) is not p-almost everywhere zero. It follows 6 € Ap. ]

Since the set of eigenvalues of a finite measure-preserving system is at most
countable, we deduce:
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COROLLARY 5.3: If the associated flow preserves a finite measure equivalent to
p®von (Q xR T), then F is a good averaging cocycle.

As a particular case, we obtain that if F' is non-negative and integrable then
it is a good averaging cocycle. Besides, if the cocycle F is integrable with non-
zero mean then it is cohomologous to an integrable cocycle of constant sign (it is
shown by Kocergin in [21] among deeper results; see also [9] for a detailed proof).
Since two cohomologous cocycles have the same group Ap, we have:

COROLLARY 5.4: Any integrable function with non-zero mean is a good averag-
ing cocycle.

Note that two cohomologous cocycles also have isomorphic associated flows
(and, in particular, if F' is integrable with non-zero mean then the associated
flow is isomorphic to a special flow preserving a finite measure). More generally,
here is another direct consequence of Proposition 5.2.

COROLLARY 5.5: If two cocycles have isomorphic associated flows and if one of
them is a good averaging cocycle, then so is the other one.

This corollary implies that the good averaging property is preserved by orbit
equivalence. It is also preserved by induction: for a measurable subset A of
positive meagure in €, denoting by n4(w) the first return time of w € A in A
and by T4 the induced transformation w — T™4(w), we have that the cocycles
Fon (Q,T) and Fa: w+ F(4)(w) on (A, Tx) have isomorphic associated flows
(it can also be directly checked that Ap, = Ap).

It is proved in [15], [16] (see also [2]) that, up to an isomorphism, every non-
singular, conservative, ergodic and free R-action is the associated flow of a recur-
rent cocycle over an arbitrary ergodic aperiodic measure-preserving dynamical
system. So a variety of examples of possible sets Ar is known.

Small modifications of the proof of Theorem 4.1 yield the following result which
seems to be of general interest in the spectral theory of non-singular transforma-
tions. The Polish topology of the eigenvalue group is defined in the same way
as the topology of A from the L?-topology on eigenfunctions, and when the
transformation is conservative, the eigenvalue group cannot carry a full measure
(see, e.g., [19)).

THEOREM 5.6: Let S be an ergodic conservative non-singular automorphism
or flow of a standard space (Y,B,v), and let A be the eigenvalue group of S,
equipped with its Polish topology.
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Assume that there is a set of full measure Y’ inY', and an eigenfunction selector
6 — gg = g{(h,-) on A, where g is a measurable function of modulus one on A x Y’
such that, for any € Y', the function 6 — g(6, ) is continuous on A.

Then A is countable.

6. Independent identically distributed processes

THEOREM 6.1: If the process (F o T™), defined on the probability space €2, is
independent, then either

F=0a.e or

there exists a # 0 such that F' takes (a.s.) its values in a discrete subgroup aZ
of the real line and O = a~1Z or

F does not take its values in a discrete subgroup of R and ©p = {0}.

COROLLARY 6.2: If the process (F o T™) is independent, then F is a good
averaging cocycle.

Proof of Theorem 6.1: Fix 6 € ©p. We have

1 N-1
; L (n) .
ngnooE[N nz;;e(aF )} #0.

But
Ele(0F™)] = Ele(6F)]"

so we have Ele(F)] = 1 and thus 6 F € Z almost surely. |

Remarks:

e If the function F is integrable centered and if the stationary process asso-
ciated is independent, the random walk (F(")) is recurrent and the cocycle
F is regular. (See [37] for a description of the relationships between recur-
rence of random walks and ergodicity of cocycles.) In this case Proposition
5.1 applies!.

o The good averaging property can also be proved when the process (F oT™)
has some kind of asymptotic independence property. By way of example,
using the spectral property of Perron-Frobenius operators, we can show
that the group Ar is countable in the following cases:

- (2, 7T) is a subshift of finite type, u is a Gibbs measure and F' is Lipschitz.

1 This remark has been communicated to us by J. Aaronson.
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- £ is an interval, p is absolutely continuous, T is expanding and F has
bounded variation.

7. Gaussian processes

THEOREM 7.1: If the process (F o T™), defined on the probability space 2 is
ergodic, Gaussian and centered, then either the set O reduces to {0} or it is all
the real line.

COROLLARY 7.2: If the process (F o T™) is Gaussian and ergodic, then F is a
good averaging cocycle.

Proof of Theorem 7.1: Recall that an ergodic Gaussian process is necessary
weak-mixing ([8, chap. 14, §2]). This implies that there exists a subset E of N,
of asymptotic density one (i.e., liminfy_,o %#(E N [0,N)) = 1) such that the
sequence (F o T™),cr goes weakly (in L2(p)) to zero.

Let us suppose that 1 € ©p, and show that F is a real coboundary (for the
general case, replace F by 6F). We have

1 N-1 ) 1 N-1
lim — ;)E[e(ﬂ" )] = E[A}Lﬁ%o N e<F<"))] 0.

N—ooo N = =
Since the random variable F(™) has a Gaussian distribution, we have
Ele(F™)] = exp(—2n?||F™]]3).
The Cesaro means of the sequence of positive numbers
(exp(—2a?||F™|12))

do not go to zero; hence there exist ¢ > 0 and a subset E’ of N, of positive
asymptotic density such that, for any n € E’,

exp(~—27r2||F(")|l§) > €.

is bounded in L?(x). Now, EN E’ has positive asymp-
neEng 15 bounded in L?(p),
and we can extract from it a subsequence (F(™), cgn which converges weakly to
a limit G in L. We write

The sequence (F("))n B
totic density, hence it is infinite. The sequence (F(™)

F=F" _F® T+ FoT"

and we recall that, along the sequence E”, weak-lim F o T" = 0. We conclude
that F=G —GoT. |
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Remark: It is interesting to notice that the positive results obtained in the i.i.d.
case and in the Gaussian case for the random mean ergodic theorem do not at
all extend to the pointwise convergence. Indeed it is proved in [5] that if (a,,) is a
sequence of real numbers linearly independent over QQ, then it is universally bad
for pointwise convergence, i.e., for any non-trivial probability measure-preserving
flow (X, A, v, (1¢)1cr) there exists a bounded measurable function f on X such
that (3.3) is not an almost everywhere convergent sequence. In our context this
implies that if F' has a continuous distribution and if the process (F o T") is
ii.d. or Gaussian, then almost surely the sequence (F(™)) is universally bad for
pointwise convergence.

8. The random mean ergodic theorem for weakly mixing systems

In this section we describe a construction of an integrable cocycle F' which is
not a good averaging cocycle, and which can be chosen with integer values. This
construction is universal, in the sense that it takes place in an arbitrary dynamical
system, and it allows us to show that the random mean ergodic theorem for mildly
mixing transformations (Theorem 3.5) is not true for the class of weakly mixing
transformations.

THEOREM 8.1: For any aperiodic and ergodic probability measure-preserving
system (Q, T, p,T) there exists an integrable function F such that, for almost
every w € §, there exists a number 0 such that the sequence

Z F("’)(w

does not converge.

THEOREM 8.2: For any aperiodic and ergodic probability measure-preserving
system (2, T, p, T) there exists an integrable function F such that, for almost
every w € §, there exists a weakly mixing probability measure-preserving system
(X, A,v,7) and f € L*(u) such that the sequence

1= (n)

il Z fo F (w))
<N n=0

does not converge in L?(p).

In the proofs of these theorems we will use a lemma, which says that if a
sequence (L,) of numbers grows sufficiently fast, then the random variables
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6 — L0, defined on the unit interval with uniform probability, are almost inde-
pendent. A proof of this lemma is postponed to the end of the section. For any
real number z, we denote ||z|| = 5-d(z,Z) where d(z,Z) is the usual distance
from z to Z.

LEMMA 8.3: For any sequence (€,)n>o of positive real numbers, there exists a
sequence (Ly)n>o of integers such that, for any sequence (@, )n>o of real numbers,
the set of real numbers 8 satisfying

”Lne - O‘n” <eép (n > 0)’
contains a Cantor set, hence an uncountable compact subset of R.

Proof of Theorem 8.1: 'We consider a triangular array (L, ,),n > 1,0 <i < 2",
of positive integers such that for any E C {(n,i) € N> : n > 1,0 < i < 2"}, there
exists § € R satisfying

(n,i) ¢ E = ||Ln.0) <277,
1
(n,i) € E = ||Lp,0 — 4—[] <2 ",

The existence of such an array is ensured by Lemma, 8.3.

For each n > 1, we consider a Rokhlin tower of height 4™h,, which covers all
the space € except a part of measure less than 27". The base of this tower
is a set A, € T such that T™A,,0 < m < 4"h,,, are pairwise disjoint and
i <U0<m<4"hn TmAn) > 1 — 27" The sequence of positive integers (h,) is
assumed to satisfy the following conditions:

Cl:  h, > 27

C2: 12 anl Y esnlbn/he) < 1;

C3: ZnZl(l/h") Maxg<icon L, < +00;

C4: there exists 2, € T such that p(2,) > 1 — 27" and, for all w € Q,,
forall £ =1,...,n — 1, for each set A which is a union of levels of the tower
{T™Ap : 0 < m < 4%hy} and for all N > hy,,

L N1
‘N Z xa(Ttw) — p(A)| < 27,

The existence of the sequence of heights (hy,,) and corresponding towers is ensured
by an inductive construction (to have C4 we use the pointwise ergodic theorem
and the Egorov theorem).

We denote Q' := (1,5, 2, and we have p(Q') > 8.
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We introduce a new numbering of the tower’s levels:
B.(i,5,k) :=T™A,
if
m = 2"h,i + hpj + k,

where 0 < 4,7 < 2" and 0 < k < h,,.
We define a function F,, on €2 by
E, =L,, on B,(4,24,0) and B,(i,25 + 1,h, — 1)
for0<i<2m, 0<j<2" L
F, =—-L,, on B,(%,25 + 1,0) and B,(i, 24, h, — 1)
for 0 <i< 2", 0<j<277L,
F, =0 elsewhere.

This function F,, is an additive coboundary; indeed,
F,=G,oT-G,,

where G,, is defined by

Gn =L, on By(i,2j,k) for0<i<2®, 0<j<2, 0<k<h,,
Gn =-Ln; onB,(,2j+1,k) for0<i<2", 0<j<2"!, 0<k<hy,
G, =0 elsewhere.
We have .
_ +17 . +17 |
]E“Fn” = Z 2" Ln,zl‘(An) < Z 2" Ln,z ——4"hn

i<2n 1<2n
and C3 implies that

> E||F, ) < +oo.

n>1
Hence the series Y, -, F,, converges in L' and also almost everywhere. Denote
its sum by F. -

We denote by ), a part of the tower |J,,, T™A, (we will remove some levels).
To be precise, we define

Epi={(6,4,k):0<i<2"0<j <2 =2,0<k < hy}

and

U= |J  Bali k).
(4,2.k)EEn

We have #ES < 2"*1h, + 4™, so using C1,

p(,) > 1—27" — #E - u(Aq) > 12772,
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We define 22 := Nn>7 Sy and we have 1(92%) > 12. Let w € Q2. For each n > 7
there exists a unique (iy, ju, kw) = (fw.ns Ju.ns Kw,n) such that

w € Bu(iw, Ju, kw)-

Putting E := {{n, %, ) : n € N} we obtain that there exists § = (w) € R such
that, for each n > 7,

. ' “n
(8.1) {z #iy = ||Lnb <2

| Ln,s 60 — 31l <277

Let us suppose that j,, is even. Since w € 92, k,, > 0 and hence Gy, (w) = Ly, ,,.
There exists an integer ¢ = ¢(n,w) such that 0 < ¢ < h,, and

Gn(T'w) =Ly, for0<t<e,
Gn(T'w) =—Lp,, forc<t<c+ hy,
Gu(Tt'w) =Ly, for c+ h, <t < c+ 2h,.

(Here we used the fact that w € Q2 implies that j, < 2" — 3.)
If j., is odd, we have the same property providing that we replace Ly, ; by -Ly, ;.
Note that if G, (w’') = £Ly,, then

1e(6Gn (') — e(ii)l <2
and if Gp(w') # £L,;, then

|e(6Gn (W) — 1] < 27

We have
cthy,—1 1 ct+h,—1 1
> T —e(~5)| < Y |et0Gnr) —e( - )|
t=0 t=0
c+hy,—1
5( > 2>+1+ oo
0<t<e t=c+1

<2+ 1+ (hy = 1)27" < 2c+ (c+ hyp)2' ™
and, by similar arguments,
c+2hy,—1 ]

Y e(0Ga(T'w)) - e(%)

t=0

<2414 (b — 1241+ (hy — 1)27"

< 2k + (c + 2027
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These inequalities imply that

1 ct+hp,—1 1 c+2h,—1
n It o t >
S Y ) o Y (0o ()| >
L2 i 2h2 glon _gen
c+ hy c+ 2hy, ~ (c+ hy)(c+2hy,)
1
> —golm _gm
3 3

because ¢ < hy,. Hence (remembering that n > 7) we obtain

1 ct+hn—1 c+2h,—1

(8.2) lc+ . ; e(0G (T*w)) — c+12hn ; e(0G(T'w))| > %.
We have
(8.3) W@ @) > 1

and let us suppose now that w € Q! N Q2. For positive integers £ we define

Viw = {w € Q: Ge(w') # Lea, .}
Since w € O, for any N > h,, and any £ < n,
1 Nl
T 2 e (T'w) < (V) +27 < 2174
=0
Indeed, Q\Vz,, is a union of levels of the £’s tower and we apply C4. Furthermore,

for any w' ¢ Vi, we have ||0G(w’)|| < 27¢. This will allow us to replace G, by
Y o< Ge in (8.2). Indeed,

c+h,—1

1 1 cth,—1
i 14
— Z <HZGKT ) e tz:; e(0G (Tw))
cthp—1n-1
> Zle (0Go(T*w)) — 1|

hn t=0 =7
cthp—1n—-1

(Ttw) +279)
t=0 ¢=7

favy

3

<Y @ f+2h< <l 1

=7

Y
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The same estimate holds if we replace ¢ + h,, by ¢ + 2h,,. Therefore, in view of
(8.2),

ct+hn—1 c+2h,—1

c:hn > e(egce(Ttw)>_c+12hn Z (QZGl(Tt )(

t=0

c>|""

Let us show now that we can choose w such that, for all £ < ¢ + 2h,, and all
£>n, Fp(w) = 0. We have

2
p(Fy # 0) < h—
Y
and, for any n > 1,
u( \U{F 760}) Z—
>n £>n

We denote by Q2 the set of w’s such that, forany n > 1, for £ > nand 0 < t < 3h,,,
Fp(T*w) = 0. We have

u(@®) >1- " 3h, Zh

n>1 £>n

It follows from C2 and (8.3) that
p(QPNQ*N Q%) > 0.

Ifwe Q3 n>7and N > 3h,, then

N-1

1
(t) _ L (t)
Z e(OF = N (GZF )
t=0
N-1 n
( GZGg(w)) > e(GZGg(Ttw)).
t=0 =7
In view of (8.2) this implies that for any w € Q' N Q2N Q32 and any n > 7,
1 ct+h,—-1 1 c+2h,—1 1
5 OF®(w)) — gF® > .
89 |G X O - e 3 eorOw)|2 g

Consequently, for any w € Q' N Q% N Q3 the sequence

'—A

1 N-
(%) e(0F® (w
t=0
does not converge. But it is clear that the set of w’s such that () does not
converge is T-invariant. By ergodicity of T, the result follows. 1
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Proof of Theorem 8.2: This proof requires only a small modification of the proof
of Theorem 8.1. By Lemma 8.3 the family (L, ;),n > 1,0 < 4 < 2" can be chosen
so that, for each w € Q2, conditions (8.1) are satisfied by all the numbers 6 in an
uncountable compact subset K, of T. We fix w € Q' N Q2N Q3. For any n > 7
and any 6 € K,, the condition (8.5) is fulfilled. Let us denote K/, := K,U(—K,,).
For any n > 7 and any 6 € K/, the condition (8.5) is fulfilled. There exists a
continuous Borel probability measure o, whose support is contained in K/, and
such that for any measurable subset A of T, 0,,(4) = o,{(—A). We consider now
the Gaussian dynamical system (X, A, v, 7) of spectral measure o, (see [8]). The
spectral measure being continuous this Gaussian dynamical system is weakly
mixing, and in the Gaussian subspace of L?(v) we can find f whose spectral
measure oy equals o,,. By (8.5) and the spectral theorem we have, for any n > 7,

1 cthy,—1 “ 1 c+2h,~1 “
c+ hn Z foTt ) - ¢+ 2hn Z foT* Sl )
1 c+h,,——l 1 c+2h,.-—1 2
- /T e Y 0RO - Y eOFOW)| dou(®)
" t=0 n t=0

cthn—1 © 1 c+2h,—1 © 2 1
i t - gF > —.
_oler}gw c+ hy, ; c(OF 7 (w)) c+ 2h, ; el @)} 2 16

Consequently, the sequence

| Nt
il ZfOTF(”(W)
N

t=0

does not converge in L*(v). [ |

Proof of Lemma 8.3: We suppose that for any n > 0, ¢, < % and we fix a

sequence (L,,) such that

Ly=1 and L, >3L"1 (n>1).
26nl

Let us prove by induction that there exists a decreasing sequence of compact
subsets (Ky,)n>0 in R such that each K, is a union of 2" intervals pairwise
disjoint of length 2¢,/L,, and satisfies:

0 Kn=|Lib -l < e, k=0,1,...,n.

We define Ky = [ag — €9, 0 + €9). Now we fix n > 0 and we suppose that
Ko D K; D --- K, are given and satisfy the announced property. Let I be an
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interval of length 2€,/L,. Since L,41 > 3L,/2¢,, {Lnt16 : 6 € I} contains an
interval of length 3 and {6 € I : ||[Lp410 — @n+1]| < €ny1} contains two disjoint
closed intervals of length 2¢,41/L, 1. This construction can be done in each of
the 2" intervals whose union is K,,, and we obtain 2"%! disjoint closed intervals
of length 2¢,41/Ln4+1 whose union is denote K, ;1. If 0 € Ky and k<n+1
then ||Lgf — ak|| < €. This completes the induction construction.

The set K := ), K is a Cantor set and, if § € K, then for any n > 0,
|10 — || < €. [

9. Appendix

The aim of this appendix is the justification of Remark 3.2. A real sequence
(@n)n>o is called ergodic if it is a good averaging sequence and if the limit of
(3.1) is zero for any non-zero number #; so, by Weyl’s criterion, the real sequence
(an) is ergodic if and only if its normal set is R\{0}, that is to say, for any non-
zero number 6, the sequence (a,8) is uniformly distributed mod 1. The sequence
a, = \/n is an example of an ergodic sequence.

The arguments of the proof of Proposition 3.1 lead directly to the following
result.

PROPOSITION 9.1: Let (a,) be an ergodic sequence, (X, A, v, (7¢)1cr) a measure
preserving flow and p € [1,+00). Denote by T the o-algebra of (7;)-invariant
elements of A. Then:

(i) for any f € LP(v), the limit of sequence (3.3) equals the conditional
expectation E, [f|Z],

(ii) for any A € A, v(A) > 0, there exists n € N such that v(AN T_4, A)
> 0.

Following ideas that Furstenberg developed in the integer-valued sequence case
we show now that the recurrence property stated in the last Proposition gives
rise to a result in combinatorial number theory. Let us recall the definition of
Banach density. If F is a subset of R, its upper Banach density is defined as

1
limsupsup —|EN[M,M + N)|
Nooo M N

where | - | denotes the inner Lebesgue measure.

PROPOSITION 9.2: Let R be a Poincaré recurrence set of real numbers, i.e. a sub-
set of R such that for any probability measure-preserving flow (X, A, v, ()tcr)
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and any A € A with v(A) > 0, there exists r € R such that v(ANn1_,A) > 0.
Then for any E C R of non-zero upper Banach density, we have

E—EnNR#9.

Proof of Proposition 9.2: In the definition of Banach density we have used the
inner measure, so it is easy to see that if E' has non-zero upper Banach density,
then E contains a closed set of non-zero upper Banach density. Therefore we can
suppose, without loss of generality, that E is closed. We define f: R — [0,1] by

fz)=(1-d(z,E)*

(where d(z, E) denotes the usual distance between z and E).

On the space C of continuous functions from R into [0, 1], equipped with the
topology of uniform convergence on compact subsets, we denote by 7 the action
of R by translation: if g € C then (rg)(z) = g(z + t).

We denote by X the closure of the orbit of f, i.e.,

X:={n(f):teR} ={f(-+1t): t eR}.

Since f is uniformly continuous, by the Arzela—Ascoli theorem, X is a compact
metric space.

By the standing assumption of non-zero density, we know that there exist § > 0
and two real sequences {a,), (8,) such that lim, oo (Bn — @n) = +00 and, for
n>1,

1

5—_0[—|Em [otn, Ba]| > 6.

We define a sequence (vy,) of probability measures on X by

1 /ﬂn
Un(P) 1= —>t— b(7 dt
n(®)i= g | an()
for any continuous function ® on X. We extract from (v,) a weakly convergent
subsequence (v, ) and we denote by v its limit. From the fact that 8, — a, —
400, we deduce that v is 7-invariant. We want now to apply the recurrence
property along R to the probability measure-preserving flow (X, v, 7).

Fix € > 0. Sets A:={ge€ X : g(0) =1} and {g € X : g(0) < 1 — ¢} are closed
disjoint subsets of X. Hence there exists a continuous function @ from X into
(0,1] such that

_J1 ifg(0) =1
®(9) = {0 if g(0) <1—e.
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We have v(®) = limy, o0 Uy, (®) and

Brn
(@) = — / B(F(- + )dt

IHn — On an

1 Bn
> 1 / 15(t)dt,

,Bn_an

because, if ¢ € E, then f(0+1t) =1 and ®(f(- +t)) = 1. Therefore, for each
n, vn(®) > 6 so v(®) > &. This implies that v({g € X : g(0) > 1—€}) > 6
and, letting € go to zero, we obtain v(A) > 4. Now we can use the recurrence
property in the dynamical system (X, v, 7), and we have: there exists r € R such
that v(AN7_.(A)) > 0, hence there exists r € R and g € X such that g(0) =1
and g(r) = 1. By definition of X such a function g is a limit of a sequence
(f(- +t,)). Thus we have proved the existence of r € R and of a sequence (£,)
of real numbers such that

lim f(t,) = nll)n;o flr+t,) =1

n—oo

By the definition of f this means exactly that r € E — E. |

References

[1] J. Aaronson, An Introduction to Infinite Ergodic Theory, Mathematical Surveys
and Monographs 50, American Mathematical Society, Providence, RI, 1997.

[2] J. Aaronson, T. Hamachi and K. Schmidt, Associated actions and uniqueness of
cocycles, in Algorithms, Fractals and Dynamics (Y. Takahashi, ed.), Plenum Press,
New York, 1995, pp. 1-25.

[3] J. Aaronson, M. Lemanczyk, C. Mauduit and H. Nakada, Koksma inequality
and group extensions of Kronecker transformations, in Algorithms, Fractals and
Dynamics (Y. Takahashi, ed.), Plenum Press, New York, 1995, pp. 27-50.

[4] L. Bagget and K. Merrill, Smooth cocycles for an irrational rotation, Israel Journal
of Mathematics 79 (1992), 281-288.

[5] V. Bergelson, M. Boshernitzan and J. Bourgain, Some results on nonlinear
recurrence, Journal d’Analyse Mathématique 62 (1994), 29-46.

[6] J. P. Conze, Remarques sur les transformations cylindriques et les équations fonc-
tionnelles, Publications du Séminaire de Probabilités, Université Rennes, 1976.

[7] J. P. Conze, Ergodicité d’un flot cylindrique, Bulletin de la Société Mathématique
de France 108 (1980), 441-456.



320 M. LEMANCZYK ET AL. Isr. J. Math.

[8] I. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, New York,
1982.

[9] J. M. Derrien, Sur lexistence de cohomologues réguliers pour les cocycles
intégrables, Séminaires de Probabilités de Rennes, 1995.

[10] K. Fraczek, On ergodicity of some cylinder flows, Fundamenta Mathematicae 163
(2000), 117-130.

[11] H. Furstenberg, Strict ergodicity and transformations of the torus, American
Journal of Mathematics 83 (1961), 573-601.

[12] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory,
Princeton University Press, 1981.

[13] H. Furstenberg and B. Weiss, The finite multipliers of infinite ergodic transfor-
mations, Lecture Notes in Mathematics 668, Springer-Verlag, Berlin, 1978, pp.
127-132.

[14] C. Gamet and D. Schneider, Théorémes ergodiques multidimensionnels et suites
aléatoires universellement représentatives en moyenne, Annales de I'Institut Henri
Poincaré, Probabilités et Statistiques 33 (1997), 269-282.

[15] V.I. Golodets and S. D. Sinel’shchikov, Existence and uniqueness of cocycles of an
ergodic automorphism with dense ranges in amenable groups, Preprint, Institute
of Low Temperature Physics and Engineerings, 19—83, Kharkhov, 1983.

[16] V. I. Golodets and S. D. Sinel’shchikov, Amenable ergodic actions of groups and
images of cocycles, Soviet Mathematics Doklady 41 (1990), 523-525.

[17] T. Hamachi and M. Osikawa, Ergodic groups of automorphisms and Krieger’s
Theorems, Seminar on Mathematical Sciences, Keio University 3, 1981.

[18] P. Hellekalek and G. Larcher, On ergodicity of a class of skew products, Israel
Journal of Mathematics 54 (1986), 301-306.

[19] B. Host, J. F. Méla and F. Parreau, Non-singular transformations and spectral
analysis of measures, Bulletin de la Société Mathématique de France 119 (1991),
33-90.

[20] A. Iwanik, Ergodicity of piecewise smooth cocycles over toral rotations,
Fundamenta Mathematicae 157 (1998), 235-244.

[21] A. V. Kocergin, On the homology of functions over dynamical systems, Doklady
Akademii Nauk SSSR 231 (1976); transl.: Soviet Mathematics Doklady 17 (1976),
1637-1641.

[22] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New
York, 1974.

[23] M. Lacey, K. Petersen, D. Rudolph and M. Wierdl, Random ergodic theorems
with universally representative sequences, Annales de I'Institut Henri Poincaré,
Probabilités et Statistiques 30 (1994), 353-395.



Vol. 130, 2002 RANDOM ERGODIC THEOREMS AND REAL COCYCLES 321

[24] M. Lemafczyk, F. Parreau and D. Volny, Ergodic properties of real cocycles and
pseudo-homogeneous Banach spaces, Transactions of the American Mathematical
Society 348 (1996), 4919-4938.

[25] C. Moore and K. Schmidt, Coboundaries and homomorphisms for non-singular
actions and a problem of H. Helson, Proceedings of the London Mathematical
Society 40 (1980), 443-475.

[26] I. Oren, Ergodicity of cylinder flows arising from irregularities of distribution, Israel
Journal of Mathematics 44 (1983), 127-138.

[27] M. Osikawa, Point spectra of non-singular flows, Publications of the Research
Institute for Mathematical Sciences of Kyoto University 13 (1977), 167-172.

[28] J. C. Oxtoby, Measure and Category, Graduate Texts in Mathematics 2, Springer-
Verlag, New York, 1971.

[29] D. Pask, Skew products over the irrational rotation, Israel Journal of Mathematics
69 (1990), 65-74.

[30] D. Pask, Ergodicity of certain cylinder flows, Israel Journal of Mathematics 76
(1991), 129-152.

[31] M. Queffelec, Substitution dynamical systems, Spectral analysis, Lecture Notes in
Mathematics 1294, Springer, Berlin, 1987.

[32] J. Rosenblatt, Norm convergence in ergodic theory and the behaviour of Fourier
transforms, Canadian Journal of Mathematics 46 (1994), 184-199.

[33] J. Rosenblatt and M. Wierdl, Pointwise ergodic theorems via harmonic analysis, in
Ergodic Theory and its Connections with Harmonic Analysis (K. Petersen and .
Salama, eds.), London Mathematical Society Lecture Note Series 205, Cambridge
University Press, 1995.

[34) H. P. Rosenthal, A characterization of Banach spaces containing !, Proceedings
of the National Academy of Sciences of the United States of America 71 (1974),
2411-2413.

[35] W. Rudin, Fourier Analysis on Groups, Interscience Publishers, Wiley, New York,
1962.

[36] K. Schmidt, Cocycles of Ergodic Transformation Groups, Lecture Notes in Mathe-
matics 1, MacMillan Co. of India, 1977.

[37] R. J. Zimmer, Random walks on compact groups and the existence of cocycles,
Israel Journal of Mathematics 26 (1977), 214-220.



