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ABSTRACT 

1 x - ' N - 1  r We s tudy  m e a n  convergence of ergodic averages ~ z-.,n=o " o "rkn("~) (*) 
associa ted to a measure-preserv ing  t r ans fo rmat ion  or flow T along the  

r andom sequence of t imes  kn(w) = ~'~,~--~ F(T3w) given by the  Birkhoff 

sums  of a measurab le  funct ion F for an  ergodic measure-preserv ing  t rans-  

format ion  T.  

We prove tha t  the  sequence (kn(w)) is a lmost  surely universal ly good for 

the  m e a n  ergodic theorem,  i.e., tha t ,  for a lmost  every w, the  averages (*) 

converge for every choice of T, if and  only if the  "cocycle" F satisfies a 

cohomological condit ion,  equivalent  to saying t ha t  the  eigenvalue group 

of the  "associated flow" of F is countable .  We show tha t  this  condi t ion 

holds in m a n y  na tu ra l  s i tuat ions.  

W h e n  no a s sumpt i on  is made  on F ,  the  r andom sequence (kn(w)) is 

a lmost  surely universal ly good for the  m e a n  ergodic theorem on the  class 

of  mildly mixing t r ans fo rmat ions  T. However, for any  aperiodic t ransfor-  

ma t ion  T,  we are able to cons t ruc t  an  integrable funct ion F for which 

the  sequence (kn(w)) is not  a lmost  surely universal ly good for the  class 

of  weakly mixing t ransformat ions .  

1. I n t r o d u c t i o n  

Let (~t, T, #) be a standard probability space, T a measure-preserving transfor- 

mation of this space which we throughout assume to be ergodic, and F a real 

measurable function on it. For x real, we denote e(x) = exp(2i~rx). We study 

the convergence of the averages 

N-1  
,11, 

n=O N>O 

where 0 E ~ ,  ~ C f~ and F (n) denotes  the B i r k h o f f s u m  F(~) = ~ k = 0 n - l F ~  k of  

F. 

The behavior of such sums is related to the theory of real cocycles over measure- 

preserving systems and their associated flows. As usual, the function F will also 

be called a cocyc le .  

Denoting by/3 the Borel a-algebra of the torus T = •/Z and by ~ the Lebesgue 

measure on (T, B), we consider for each real 0 the skew product transformation 

TO,F on the product space (~  • T, 7- | B, # | ~) defined by 

To,F(W, x) : (Tw, x + OF(w)), 
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This is a measure-preserving transformation and it satisfies 

T2,F( , x) = x + 

A direct application of the pointwise ergodic theorem to the function (w, x) ~-+ 

e(x) gives: for every O, the sequence (1.1) converges p-almost everywhere and in 

any LP(p), 1 <_ p < oc. Furthermore, if the skew product is ergodic, the limit is 

zero .  

We are interested in the following question: can the set of full measure on 

which the sequence (1.1) converges be chosen independently of 8? 

Definition: We call F a g o o d  ave rag ing  cocyc le  if there exists a subset ~t of 

of full measure such that for all w ~ ~'  and for all (~ E R the sequence (1.1) 

converges. 

This "good averaging" property is related to the mean ergodic theorem 

along random sequences since, in case F takes integer values, there is equivalence 

between: 

�9 F is a good averaging cocycle; 

�9 for p-almost every w, the sequence (F(~)(w)) is a good sequence for the 

mean ergodic theorem, that is to say, if (X, .4, v, T) is any invertible proba- 

bility measure-preserving system, if 1 _< p < oc and if f C LP(v), then the 

sequence 

N--1 

n=0 

converges in LP(,) .  

When F takes real values there is a similar equivalence for measure-preserving 

flows (X, 7) (see Section 3). 

In this paper we study the good averaging property, we give a variety of 

examples, and we investigate this random mean ergodic theorem. Similar 

questions have already been studied in [23] and [14]. A general reference for 

ergodic theorems along subsequences is [33]. 

Here is a summary of our results. 

The good averaging property is not satisfied in general but it is satisfied in 

some interesting situations; in particular, in each of the following cases F is a 

good averaging cocycle: 

�9 F is a regular real cocycle; 

�9 F is integrable with non-zero meam and more generally when its associated 

flow preserves a probability measure; 
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�9 the process (F  o T n) is independent; 

�9 the process (F o T n) is Gaussian; 

�9 the dynamical system (~t, T,  it, T) possesses a hyperbolic character and F 

is sufficiently regular. 

Furthermore, the limit of (1.1) is zero for all 0 r 0, and the limit of (1.2) is 

the limit of the usual ergodic averages, in some of these cases, namely when: 

�9 F is an ergodic real cocycle; 

�9 the process (F  o T '~) is independent and F does not take its values in a 

subgroup aZ; 

�9 the process (F  o T n) is Gaussian and F is not a coboundary; 

�9 the associated flow of the cocycle F is weakly mixing. 

We obtain a complete characterization of the good averaging property: F is a 

good averaging cocycle if and only if either F is a real coboundary, or the set of 

all 0 such that OF is a coboundary modulo 1 is countable, that is the associated 

flow of F has countably many eigenvalues (Theorem 4.1). 

Since not every function F is a good averaging cocycle, another question can 

be asked: under which assumption on the dynamical system (X,`4, v, T) does 

the sequence (1.2) converge, whatever be F and f ?  We prove that given any 

F,  for it-almost every w, we have: for any mildly mixing system (X, `4, v, T) and 

any f E LP(v), the sequence (1.2) converges in LP(v). On the other hand, for 

any aperiodic ergodic system (ft, T,  #, T), there exists an integrable function F 

such that,  for It-almost all w, there exists a weakly mixing system (X,,4, v, r )  

and f E L2(v) such that the sequence (1.2) does not converge. This means that 

there always exists a universal set of measure one for the random mean ergodic 

theorem on the class of mildly mixing systems, and there can be no such set for 

the class of weakly mixing systems. 

We should add that the problem of mean convergence of averages (1.2) is quite 

different from the problem of pointwise convergence. For example, it is proved 

in [23] that if the random process (F  o T n) is independent, centered and square 

integrable, then for almost all w and for any choice of (X, A, v, T) there exists 

a bounded measurable function f on X such that  the averages (1.2) do not 

converge almost everywhere. But these averages do converge in the mean (see 

[23] Section 7, or the present paper, Section 6). Other examples enlightening the 

great difference between problems of mean and pointwise convergence are given 

in Section 7. 

The case of non-negative integrable functions and the case of integer-valued 

non-centered functions F have already been studied. In these cases, the strongest 
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result of ~-almost everywhere convergence of the averages (1.2) is proved in [23]. 

Just a word on the method used in [23]: it is based on the return-times ergodic 

theorem, in the discrete and in the continuous time cases, and some subtle con- 

structions. We are studying here only mean convergence and in this setting the 

return-times theorem is nothing else than the classical Wiener-Wintner  ergodic 

theorem. The approach proposed in this paper will be quite different. 

Let us notice finally that  the only assumptions on the system (X, J[, v, r )  that  

we will make are on the spectral level, and therefore our results on the random 

mean ergodic theorem extend to any representation of Z (or R) in the unitary 

group of a Hilbert space. 

2. 

For each 0 E ~ let 

Sets  of critical values associated to the  funct ion  

N - 1  

g0(w) := lim 1 E e(OF(n)(w))' 
N~or N 

n=0 

which is well defined a.e. and in L2(tt), as we already noticed. This limit function 

satisfies the transfer equat ion  

go (To+) = e(-OF(w) )to (w). 

Recall that  we assume that  T is ergodic. Thus Ig01 is a.s. constant and if it is 

not zero then F is a coboundary modulo 1, i.e., there exists a real measurable 

function G on ~2 with OF(w) = G(Tw) - G(w) mod 1 a.e., and such a function G 

is called a transfer function.  

We moreover have, almost everywhere, go(Taw) -- e(-OF (n) (w))go(w) for every 

n > O, so 
N--1 N - 1  

1 1 
-~ E g~ = go(w)~ E e(-OF(")(w))' 

n=0 n=0 

which implies, by the ergodic theorem, 

(2.1) E[go] = Igol 2 a.e. 

Definitions: 
�9 We denote by OF the set of real numbers O such that  to # 0 a.e. or 

equivalently g[go] # O. 
�9 We denote by AF the set of real numbers 0 such that  OF is a coboundary 

modulo 1. 
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Notice that OF C AF. We shall need basic properties of AF, which come back 

to [6], [17], [25]. Namely, AF is a Borel subgroup of R and it can be endowed 

with a natural Polish topology, which we describe at the end of this section; it 

is also equal to the eigenvalue group of the so-called associated flow (or "Mackey 

range") of F (see Section 5). If F is a real coboundary, that  is if there exists 

a measurable real function G on ~ such that F(w) = G(Tw) - G(w) a.e., then 

A F = ~. The converse is true (see Section 3). 

The next results give a first link between these sets and the good averaging 

property. 

THEOREM 2.1: For It-almost every w, 

1 g-1  
(2.2) f o r a l l O ~ O F ,  N-+~lim 

n=0 

The proof of this theorem is based on the Van der Corput inequality and the 

following proposition. 

PROPOSITION 2.2: Let G be a real measurable function on ~2. For #-almost 

every w, 

N - 1  
1 

(2.3) for all 0 6 R, lim N-~ ~ ~ e(aa(T"w)) = E[e(Oa)]. 
~'~0 

In particular, if F(w) = G(Tw) - G(w) a.e., then for almost every w we have 

F( '0(w) = G(Tnw) - G(w) for every n, so we obtain the following immediate 

corollary. 

COROLLARY 2.3: I[ F is a real coboundary, then it is a good averaging cocycle. 

Proof of Proposition 2.2: By the pointwise ergodic theorem, there exists a subset 

~ '  of ~, with #(~ ' )  = 1, such that for any rational number 0 and any w in ~ '  

convergence (2.3) holds. By density we just need to prove that for almost every 

w the sequence M~: R --+ C, N = 1, 2 , . . .  defined by 

N - 1  

M~(8)  = ~ ~ e(OG(T w)) 
n=0 

is equicontinuous. 

For each positive integer K,  let ~K be the characteristic function of the set 

[IGI > K], and let XK = 1 -- ~]g. Since T is ergodic, for each K we have for 
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almost all w 

(2.4) lim 1 ~ 1  
n=0 

Let us fix w for which (2.4) holds for every K.  We want to show that for every 

e > 0 there is a (~ > 0 so that if 10-  0' I < ~ then for every N 

IM/v(O) - MN(O')I < e. 

Since for each fixed N, M~ is continuous, we just need to find a 5 which works 

for every large N. Let us write 

1 
M~r(O) - M/v(O') = ~  

+ 

N - 1  

E XK(Tnw)(e(OG(Tnw)) - e(O'G(Tnw))) 
~ = 0  

1 N-1 
E ~K(Tnw)(e(OG(Tnw)) - e(O'G(Tnw)))" 
7~,=0 

We can choose K so that E(~/K) = #([[G I > K]) < e/4 and then, because of 

(2.4), we can choose No large enough so that if N > No the absolute value of 

the second term is less than e/2. The first term can be made less than e/2 by 

choosing g small enough because of the uniform (in n) estimate 

XK(Tnw)Ie(OG(Tnw)) - e(O'G(Tnw))l <_ 2rr. IO - o'1. K. | 

Proof of Theorem 2.1: The proof is based on the classical Van der Corput 

inequality (see, for example, [22, A71.3]), which implies that if (u,~)n>_o is a 

sequence of complex numbers such that,  for any integer h >_ 0, 

1 N-1 
"~h :~- N--~colim ~ E Un+h~--~ 

n=0 

exists and satisfies 

then 

H - 1  

lim 1 % = 0 
H--+oc 

h=O 

N - 1  

lim 1 E un = O. 
N--+oo 

n=O 

By Proposition 2.2, we know that,  for almost all w, for any h >_ 0 and any 0, 

1 N-1 

n,=O 
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Let us apply Van der Corput's argument to the sequence Un := e (OF(n)(w)). We 

have 
N - 1  

1 
" ~ h : :  N~oo-~Zelim . . . . (O(F(n+h)(w)-F(n)(w)))  

n~O 

1 N-1 
= g-.~lim ~ Z e (OF(h)(Tnw)) 

n~--0 

and 
H - 1  

lim Z 7h = E ~ e(OF (h) 
H---rcx~ H h=0 h=0 

which is equal to zero if 0 r OF. | 

COROLLARY 2.4: I f  the set OF iS countable, then F is a good averaging cocycle. 

Proof of Corollary 2.4: We know that for each 0 C O F  there exists a subset f~e 

of ~2 of full measure such that for any w E f~0 the sequence (1.1) converges. I 

We finish this section by the description of the natural topology of AF. This 

topology is inherited from the ordinary topology on ]R and from the L2-topology 

on the transfer functions. More precisely, to each 0 E AF we choose a measurable 

transfer function Go from f~ into the torus qi' corresponding to OF(w) (mod 1). 

Then, we define the metric d on AF by 

(/o d(O,O'): = I 0 -  0' I + inf [e(x +Go) - e(Ge,)l 2 d# 
xE~ 

- - I o - o ' I + ( 2 - 2  /ne(Go -Go,)d# ) �89 

(note that this expression does not depend on the choice of Go, Go, since e(Ge) 
is determined a.e. up to a constant). 

This metric gives to As the structure of a separable complete topological group, 

in other words As is a Polish group. 

Now, OF is an open neighborhood of 0 in AF. Indeed, for every 0 C As, we 

have 

N - 1  

t0(w)--lim 1 f Y-.~ -N e (Co(Tnw) - Go(w)) = e (-Co(w)) e(Go)d# a.e., 
n=O 
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whence 

I~el = / e ( G e ) d t t  (2.5) 

and 0 -+ l/el is continuous in the topology of AF. 

In particular AF is a countable union of translates of OF. As OF is clearly a 

Borel set, it follows that AF is a Borel subgroup of •. It also follows that  OF is 

countable iff AF is countable. 

3. T h e  r a n d o m  m e a n  e r g o d i c  t h e o r e m  for  mi ld ly  mix ing  s y s t e m s  

To begin, we recall in a general setting the link between convergence of trigono- 

metric averages and the mean ergodic theorem along subsequences. A sequence 

of real numbers (an),~>o is called a g o o d  ave rag in g  s e q u e n c e  if for every real 

number 0 the sequence of the averages 

1 N-1 
(3.1) -N E e (Oa,~) 

n=0 

converges. 

PROPOSITION 3.1: Let (a,~) be a good averaging sequence and p C [1, + ~ ) .  

If  (an) is a sequence of integers then, given any invertible probability measure- 
preserving system (X, ,4, u, T) and f E LP(v), the sequence 

converges in LP(u). 

Given any probability measure-preserving flow (X, .4, u, (~-t) tea) and f C L p (u), 
the sequence 

N - 1  

n~O 

converges in LP(y). 

These results are well known. In order to be complete, and because it was 

an important part of our initial motivation for the study of (1.1), we recall the 

proof in the case of an integer-valued sequence and a measure-preserving trans- 

formation. The argument can be repeated word for word in the case of a real 
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sequence (an) and a measure-preserving JR-action (then the spectral measure in 

the argument below is defined on N). 

If f E L 2(u) and a /  denotes the spectral measure of Proof of Proposition 3.1: 

f under T, then 

1 N - 1  K - 1  2 
1 ~ fo~.ak 

K k=0 2 

l ~ l e ( O a n )  K-1 dcrI(O)" 

Since (an) is a good averaging sequence, by the dominated convergence theorem 

and the Cauchy criterion, we obtain the convergence of (3.2) in L2(u). For 

bounded functions f ,  the sequence (3.2) converges in probability and is uniformly 

bounded, hence it converges in LP(u). The result follows by density of L ~ in L p. 

Remark 3.2: In case when the limit of the averages (3.1) is zero for any non-zero 

real number 0, i.e., when the sequence (an0) is uniformly distributed mod 1 for 

any non-zero real number 0, the limit of the averages (3.3) is the limit of usual 

ergodic averages and the sequence (an) is a Poincar~ recurrence sequence ([12]). 

Following Furstenberg's classical argument, this property has consequences in 

combinatorial number theory. This remark, which is very well known in its 

statement for integer-valued sequences (an), is developed in a short appendix 

(Section 9) for the real case. 

The proof of Proposition 3.1 shows that, given (X, .4, u, 7-) and f E LP(u), the 

conclusion holds if the averages (3.1) converge a/-a.e. Therefore, from Theorem 

2.1 we obtain a spectral condition on (X, JI, u, T) for the validity of the random 

mean ergodic theorem. 

PROPOSITION 3.3: Given any integer-valued cocycle F, there exists a subset ~ '  

of ~ of full measure such that, for any w C f~', we have: if cr denotes the maximal 

spectral type of the system (X, .A, u, T) in the orthocomplement of the constant 

functions in L2(u) and a(OF) = O, then for each f E LP(u), the sequence (1.2) 

converges in LP(z/) to the integral o f f .  

The similar statement holds for real-valued F and measure-preserving flows. 

Remark: If we are looking for explicit constructions of "good sequences of times" 

for the mean ergodic theorem, we can remark that, in the case when T is a 
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uniquely ergodic transformation of the regular measure space (~, 7-, #) and F is 

continuous, we can choose ~ = ~ in the statement of Proposition 3.3. This is so 

because, in that  particular case, the universal set ~t ~ for 0 ~ OF is the set where 

the ergodic averages of the continuous functions e(OF(h)(.)) converge (proof of 

Theorem 2.1). 

The next results give us precise information on the possible size of the Borel 

subgroup h r .  In [17] and [6] it is proved that  

(3.4) ezther the set AF has Lebesgue measure zero, or F zs a real coboundary. 

In fact, much more is known. Moore and Schmidt in [25] gave a considerable 

strengthening of this result. To formulate their result let us recall the definition 

of a full measure on •, which appears in [25]: a Borel probability measure a on 

R is full  if l i m s u p t _ ~  18(t)l < 1. 

THEOREM 3.4 ([Moore and Schmidt]): I f  a full measure is concentrated on AF 

then F is a real coboundary and AF = R. 

In other words, if F is not a real coboundary, then AF is a w e a k  D i r i c h l e t  

s u b g r o u p  (see [19], where the more precise result that  AF is "saturated" is 

shown). Although Theorem 3.4 is not original, we propose a new short proof, 

whose first argument will be used later. 

Proof of Theorem 3.4: We first notice that  there exists a real measurable 

function G on AF • ~ such that ,  for each 0 E AF, for p-almost all w, 

(3.5) OF(w) = G(O, Tw) - G(O, w)mod 1. 

Indeed, as the averages in (1.1) are measurable functions of (0, w), we can choose 

the measurable function G on OF X f~ such that  e(a(O,w)) = e 0 ( w ) / [ g 0 ( w ) l  

whenever the limit go(w) exists and is non-zero (and, e.g., we let G(O, w) = O) 

otherwise). So (3.5) holds #-a.e. for each 0 E OF. Consider then a countable 

Borel parti t ion (An) of AF, where A0 = OF and each An, n r 0 is the translate 

of a part  of OF by some 0,~ E AF (which is possible because OF is open in AF). 

For each n r 0, we choose a transfer function Go. for OnF, and we define G on 

An x f~ by 

G(O, .) := aoo (') + a(o - On, "). 

Now, suppose that  a full probability measure a is concentrated on AF and fix 

e > 0 such that  

(3.6) l imsup 18(t)l < 1 - 3e. 
t ---~ ( :~  
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Then  the m a p  w ~+ g~ := e(-G( . ,w))  is measurable  from ~ into L I ( q )  and there 

exists a measurable  subset  A of posit ive measure  in gt such tha t  

for all w, w' E A, / I g ~  - g~' I da < (3.7) s 

We fix w0 E A and we associate to every w the Fourier t ransform r defined on 

r (t) = ] g~(O)g~ o (O)e(-tO)da(O). 

The  set of  (0, w) satisfying (3.5) is measurable .  So, by the Fubini theorem,  we 

have, for # -a lmos t  all w, for a -a lmos t  all 0, 

e(OF(w) ) . gv~(O) ---- g~(O), 

and, after  Fourier t ransform,  this gives 

(3.8) eTa ( t )  = Cw (t + F(w)) .  

On the other  hand,  by (3.7), we have 

(3.9) for all w E A, I~(t) - r < s 

The  Fourier t rans form g ~ It ~+ f g(O)e(-tO)da(O)] is continuous from Ll(a)  
into the space of bounded  continuous functions on ]R equipped with the uniform 

norm.  Hence the m a p  

M(w) := sup Ir 
t E ~  

is measurable  on ~.  But,  by (3.8), the m a p  M is T-invariant ,  hence it is a.e. 

constant ,  and by (3.9) we have 

M >_ sup l~( t ) l  - s  1 - s 
t E ~  

Similarly, by (3.8), (3.6) and (3.9), 

l imsup l r  is a.e. constant  and < 1 - 2s 
t--~=t:c~ 

This implies tha t  the real function 

G(w) := sup{t  e R :  Ir __ 1 - s 

is a lmost  everywhere defined, and it is measurable ,  again by the continuity of the 

Fourier t ransform.  By (3.8), we have 

G(Tw) = V(w) - F(w) 
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and the proof is finished. | 

We give now an application of Theorem 3.4 to the random mean ergodic 

theorem. For simplicity, we discuss here the case of an integer-valued function 

F,  but all can be extended to the real case. 

Recall that  a measure-preserving system (X, A, v, T) is mi ld ly  m ix in g  ([13], 

[12], [1], [31]) if it has no rigid factor. Equivalently, if a denotes the maximal 

spectral type of T in the orthocomplement of the constant functions in L2(v), 

then each probability measure absolutely continuous with respect to a is full. A 

strongly mixing system is mildly mixing and mild mixing implies weak mixing. 

THEOREM 3.5: For #-almost w, we have: for each mildly mixing measure- 

preserving system (X, A, v, T), for each 1 <_ p < +oc and f C LP(v) the sequence 

converges in LP(v). Moreover, if  F is not a real coboundary then the limit of this 

sequence is f x f dr. 

Proof of Theorem 3.5: If F is a real coboundary, the result is given by Corollary 

2.3 and Proposition 3.1. If F is not a real coboundary, Theorem 3.4 implies 

that there does not exist any measure absolutely continuous with respect to the 

maximal spectral type g of T concentrated on AF; so a(AF) = 0, hence a(OF) ---- 0 

and Proposition 3.3 applies. | 

Remark: We will show later that the class of T for which this random mean 

ergodic theorem holds universally does not contain all weakly mixing transfor- 

mations. 

The previous result holds in particular for all strongly mixing dynamical 

systems (X, ,4, v, T). This can be seen as an application of Rosenblatt 's study of 

norm convergence in [32]. Indeed, it is possible to prove that,  for almost every, 

w the sequence of probability measures given on Z by 

1 g -1  

n = 0  

(where (~(t) is the Dirac mass at point t) is uniformly dissipative and hence the 

norm convergence of (1.2) when T is strongly mixing is the generalization of the 

Blum-Hanson theorem given in [32]. 
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4. A c o m p l e t e  charac ter i za t ion  

THEOREM 4.1: F is a good averaging cocycle if and only if either it is a real 

coboundary or AF is countable. 

We just have to show the necessity of the condition. Indeed, the fact that  it is 

sufficient follows from Corollaries 2.3 and 2.4. We will proceed in several steps 

that  we can summarize in the following way: under the good averaging hypoth- 

esis, we prove the existence of a measurable selector of the transfer functions for 

the mod 1 coboundaries OF, 0 �9 AF, which is continuous and homomorphic with 

respect to 0; then, we show that  convergence in AF implies uniform convergence 

on a set of positive measure and, using a theorem of Rosenthal, we deduce that  

AF is locally compact,  and we conclude. 

From now on we suppose that  F is a good averaging coeycle. The function s 

is defined as in Section 2. We will denote s := s For almost all w, the 

function ~(., ~) is well defined everywhere and s w) -- 1. 

LEMMA 4.2: For almost all w, the function ~(., w) is continuous on AF. 

Proof of Lemma 4.3: By a standard representation theorem, considering for 

example the sample space of the process (F  o Tn), we can always assume that  

is a Polish space, equipped with its Borel a-algebra and a regular probability 

measure #, and that  the transformation T and the function F are continuous. 

For N > 0 and (0, w) E ]R x [2 we define 

N--1 
1 

iN (O ,03 )  
[ \ 

n=0 

Thus we have a sequence (iN) of continuous functions on ~ • [2 and hence the 

more so on AF x [2. There exists f~' C ft with #([21) = 1 such that  for all 

(0, w) E R • ~1 the limit 

t(O,w) := lira IN(O,W) 
N-+ ov 

exists. We can suppose that  f~l is T-invariant and we have 

(4.1) t(O, Tw) = e(-OF(w))e(O, w) on R • [2'. 

Furthermore, by (2.5), there exists an open neighborhood U0 of 0 in AF on 

which [go[ > �89 that  is •(0, .) has a (a.e.) constant modulus > �89 if O �9 V0. 

Let K be a compact subset of [21 with # (K)  > 0 and such that  K is equal to 

the topological support of the restriction of # to K.  The product space U0 • K 
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equipped with the AF x Q-topology is a Baire space, since it is open in the 

complete metric space AF x K.  On this space, the function ~ is the limit of a 

sequence of continuous functions. 

By the Baire Theorem (e.g., [28], Theorem 7.3), there exist Let 0 < e < ~. 

non-empty open subsets U' C Uo and A C K such that,  for any O, O' E U' and 

any co, co' E A, 

(4.2) It(0, ~) - e(0', cJ) l < ~. 

t By (4.2), for all 0 C U' We fix 0o C U' and find wo c A such that  ll(0o, coo)l > 3. 
1 and all co C A we have l/(0, w)l > ~ and, by (4.1), this implies that,  for all 0 E U' 

and all co C ft" := Un>o T - h A ,  

(4.3) le(0,co)l > 1/4. 

Thanks to our assumption on the support of #IK we have #(A) > 0, hence f~" 

is of full measure. We put U := U' - 00 which is a neighborhood of zero in AF, 

and, for any (O,w) C U x f~', we define Gr E 'r by 

e ( - C ~ ( 0 ~ ) ) =  e(0+0o,co)  le(oo, co)i 
le(0 + 0o,co)l e(0o,co) " 

Then for any w E Q" and any 0 E U, 

G~(O, Tw) = OF(w) + Ge(O, w) mod 1, 

and, by (4.2) and (4.3), for any w C A and any 0 E U, 

I1 - e ( G ~ ( O , w ) )  I < Se. 

Now, we want to increase the measure of the set A. Let m be a positive integer 
m - - 1  

such that  P(Uk=o T - k A )  > 1 - ~ and let M > 0 be such that  #([IFI > M]) < 

elm. Define 
m - - 1  m - - 1  

( n T-kEIFI <- M 0 rl( U 
" k = 0  \ k = 0  " 

and 

U~ := U n  m ~ r '  " 

U~ is a neighborhood of zero in AF and, for any w C A~, for any 0 E U~, we can 

choose k (0 < k < m) such that  Tkco E A, whence 

I1 - e(Gr 1 <_ ll - e(G~(e, Tkcz))l + ll -- e(OF(k)(w))l < 8~ + kMlO t < 9~, 
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and we moreover have #(A~) > 1 - 2e. 
1 We now consider a sequence (ek) of positive numbers such that ~ k > l  ek < 

and we put Uk := U~ k , Ak :---- A~ k , A0 := ~k>_l Ak and Gk := G~ .  We denote by 

A~) the set of w E A0 such that,  for any k _> 1, 

N - 1  

lim 1 N~oo N E XAk (rnw)  = #(Ak) > 1 -- 2ek. 
n~O 

Then #(A~) = #(A0) > 0. We are going to show that, for every w E A~, the 

sequence of functions iN(' ,  w) is equicontinuous on AF. 

F i x w  E A~. For any given~ > 0, there exist k_> 1 such that ek < 5 and 

Nk > 0 such that,  for N >_ Nk, 

1 N-1 
XA (Tn ) > 1 - 

r~--0 

Then, for every N >_ Nk and every 0, 01 E AF with 0 - 01 E Uk, 

N - 1  

ig~N(O,w ) _ eN(0,,W) I _<1 E l e ( ( 0 -  O')F(n) (w)) -  II 
n~--0 

1 N-1 
----~ ~ le(ak(0 - 01, Tnw)) - e(ak(0 - 01,w))l 

n ~ 0  

2 N--1 
___N _< 11S5. 

n=0  

This proves the equicontinuity property, and it implies that,  for every w E A~, 

/(0, w) is a continuous function of 0 on AF. But, by (4.1), the set of w's satisfying 

this property is invariant under T. Hence this set is of full measure and Lemma 

4.2 is proved. I 

LEMMA 4.3: There exist a T-invariant set f~t of full measure and a measurable 

G: AF x ~1 _+ • such that for every w E f~l, 0, 01 E AF 

(4.4) G(O, Tw) = OF(w) + G(O, w), G(O + 0 I, w) = G(O, w) + G(O I, w) rood I 

and, moreover, for every w E ft I, the function 0 ~ G(O, w) is continuous on AF. 

Proof  of Lemma 4.3: We start from the conclusion of Lemma 4.2. For 0 E O F ,  

the function l/(0, ")I is a.e. equal to a positive constant. Using the separability 
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of OF and the continuity of 0 ~-~ l(0, w), we obtain that  there exists a set of full 

measure ~ "  such that,  for every w c ~ "  and every 0 C @F, g(8, w) r 0. We may 

also assume that  the transfer equation holds everywhere on OF x ~yt. 

We construct a measurable selector G for the transfer functions on AF x ~tl 

as in the proof of Theorem 3.4, start ing with e(-G(8, w)) -- g(8, w)//lg(0, w)l on 

OF x ~" .  We consider again a countable partition (An) of AF, such that  A0 = OF 

and for each n r 0 there exists 0n E AF with An - 0n C OF, and we let 

G(8, .) := G ~  (.) + G(8 - 8n, ") if 8 C An, 

where Gen is a transfer function (mod 1) for O~F. 
Now, there is a subset of flll with full measure on which G(., w) is continuous 

on each An and the transfer equation G(O, Tw) = OF(w) + G(8, w) rood 1 holds 

for every 8 E AF. This equation implies that,  for all 8, 0 ~ E AF, 

c ( 8  + 81 , - c ( 8 ,  - a ( 8 1 ,  

is / t -almost  everywhere equal to a constant c(0, 01). For any choice of n, n I, n", 

let us denote Cn,n,,n,, := { (0, 0') E An x An,: 0 + 8' C An,, }. In each non-empty 

Cn,n',n", we choose a countable dense subset, and we denote by D the union of 

all these subsets. There is a further subset ~1 of full measure of ~ "  such that,  

for all w E f l l  for all (0, 8 I) C D, 

(4.5) G(0 + 8', w) - G(8, w) - G(8', w) = c(0, 0'). 

Since, for all w E ~1, G(., w) is continuous on each A~ and thanks to the choice 

of D, this implies that,  for all w C It ' ,  the identity (4.5) is true for all 0, 0 ~ C AF. 

Now we can pick any w0 in fl '  and replace G(8, w) by G(O, w) - G(8, wo). This 

transfer function satisfies (4.4). 

Moreover, for every w C ~ / G ( . , w )  is continuous on OF, which is a neighbor- 

hood of 0. Hence this homomorphism is continuous on all AF. I 

Now, we are able to show that  the convergence in AF implies the uniform 

convergence of the transfer functions G(8,.) on a set of positive measure. In 

order to obtain a topological equivalence, we moreover have to take in account 

the usual R-convergence. We shall do that  by using the correspondence between 

transfer functions and eigenfunctions of the associated flow described in the next 

section, but note that  the functions we construct here are everywhere defined. 

To each 8 E AF, we associate the modulus one function go defined on f~l x [0, 1] 

by 

go( , t) = (a(8,  + s t ) .  
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We denote by A the multiplicative group 

A = {go:O e AF} 

and by A the Lebesgue measure on [0, 1]. 

LEMMA 4.4: There exists a measurable subset A of ~ with positive measure 
such that the topology of L2(A x [0, 1], #[A | A) and the topology of uniform 
convergence on A x [0, 1] coincide on A, and such that, i ra  is equipped with this 
topology, then the map 0 F-+ go is a topological group isomorphism. 

Proof of Lemma 4.4: For n > 0, let Bn be the closed ball of radius 1/n centered 

at 0 in AF. Given e > 0, since Bn is separable and each e(G(., w)) with w E ~t r is a 

continuous character of AF, the set An,~ of allw E ~ '  such that [ 1 - e  (G(0, w)) [ < 

for every 0 E Bn is measurable, and moreover 

[..J An,~ = ~' .  
n>0 

Let (nk) (k > 0) be a sequence of positive integers such that 

k>0 

and let A = NAn,, l /k .  Then #(A) > 0 and, when d(0,0) _< 1/nk, we have 

I1 -  e(G(O,w)l <_ 1/k uniformly on d.  

We also know that if 0,, -+ 0 in AF then 0n --~ 0 in JR. Hence, if 0n --+ 0 in AF, 

then gen -+ 1 uniformly on A • [0, 1]. 

Conversely, let us suppose that go,, --+ 1 in L2(plA | A). We have 0n -+ 0 in 

and G(0n, .) -+ 0 in L2(#IA) .  Indeed, denoting by # d  the conditional probability 

with respect to A, it is easy to verify that 

~ I  /A ,I - go,(w,t)[2d#A(w)dt > max(O2n, ~A II - e(G(On'W))[2d#A(W))" 

Using the transfer equation, we deduce that,  for any k _> 0, we have G(On, ") --+ 0 
in L2(#[T-kA). By ergodicity of T we conclude that G(0n, .) -+ 0 in L2(#). The 

sequence (On) goes to zero in AF. | 

The next step of the proof is a general theorem of independent interest. 

THEOREM 4.5: Let ( A, A, ~) be a probability space and A either a multiplicative 
subgroup of measurable functions of modulus one on A or an additive subgroup 
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of real bounded measurable functions on A. I f  tile L2-topology and the topology 

of uniform convergence coincide on A, and A is closed in these topologies, then 

A is locally compact. 

We give the proof of the theorem in the multiplicative case, which is more 

difficult and is the one we need. For the additive case, we need only make 

obvious simplifications. 

Proof of Theorem 4.5: We will make use of a result of Haskell Rosenthal in 

functional analysis ([34]). In a real nanach space, a sequence (fk) is said to be a 

S idon  s e q u e n c e  if there exists 5 > 0 such that,  for every finite sequence of real 

coefficients ck, we have 

(4,6) ~ckfk >_ 5 1c 1. 
If (Sk) is a Sidon sequence then its span is isomorphic to ~1. Rosenthal 's theorem 

asserts: 

In a real Banaeh space, every bounded sequence contains either a weak Cauchy 

subsequenee or a S, don subsequence. 

We will apply this theorem in the Banach space of bounded real functions 

defined on A, equipped with the uniform norm. Note that,  in this space, a weak 

Cauchy sequence converges pointwise and thus, by the dominated convergence 

theorem, it converges in the L 2(v)-norm. 
1 1 Denote by A' the image of A by the lifting e(0) F-+ 0 C [ -~ ,  ~) and denote by 

B(r)  the closed ball or radius r centered at 0 in A' for the uniform norm. From 

our hypothesis we deduce that,  in the ball B(1/4) ,  the L2-convergence implies 

the uniform convergence. 

Let ~ C (0, 1/2). If m is a positive integer and if f / m  E B(e /m) ,  then f E B(E). 

We claim that  if the ball B(~) can be covered by a finite number of subsets of 

diameter less than ~/2 then the ball B(c) is precompact,  i.e., B(~) can be covered 

by a finite number of balls of arbi trary small radius. Indeed, if the ball B(e) 

can be covered by a finite number of subsets of diameter less than c/2 k, then it 

can be covered by a finite number of balls of radius ~/2 k and the ball B(r k) 

can be covered by a finite number of subsets of diameter less than ~/4 k (take 

the preimage of the covering of B(~) under the map f ~ 2k f ) ,  hence B(e) can 

be covered by a finite number of subsets of diameter less than ~/4 k. Our claim 

follows by induction. 

Now, assume that  none of the B(2 -k)  is precompact.  We construct inductively 

an infinite sequence (fk) in A' with 2 -kfk  C A' for every k and Hf* - f j l l ~  >- 1/8 
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for every i r j .  Pick any f0 in A'. Suppose f0, .-., fk-1 are chosen. By the 

previous claim, we can find go, ..., gk in B(2 -(k+l)) such that [[gi-gj [[cr > 2 -(k+2) 

whenever i ~ j .  Then no pair among the 2kgb's can be in the same subset of 

diameter 1/4, so we can choose j such that the distance of fk := 2kgj to each f,, 

i < k, is > 1/8. 

By construction, the sequence (fk) has no uniformly convergent subsequence; 

thanks to our preliminary remarks, we know that this sequence has no weak 

Cauchy subsequence. By Rosenthal's theorem, the sequence (fk)k>_2 has a Sidon 

subsequence, which we still denote by (fk)k:>2. We fix 5 > 0 such that (4.6) 

holds. Note that,  for every k, we have 2-kfk E A'. 

Consider a finite random sum ~jeJ e~fj, where (ej) is an independent random 

sequence of 4-1 with equal probabilities. We have 

E Z e j f j  -~ E E eas = E [[f)[[92 -< ~J"  
jEJ 2 /  " z,3EJ jEJ 

It follows that there exists a deterministic sequence (ek)k<j<k+2k such that 

k-b2 k 

j=k+ l  

and we define 
k+2 k 

3=k+1 

Since 2-k-lfj E A' for j > k, we have gk E B(1/4).  Moreover the sequence (gk) 
goes to zero in L2-norm, but, by the Sidon property, 

Ilgkllo~ >- 5/2. 

This contradicts our hypothesis. We conclude that some closed ball B(2 -k) is 

precompact. In the complete metric group A there exists a closed precompact, 

hence compact, neighborhood of zero. This proves that A is locally compact. 
| 

Proof of Theorem 4.1: Assume that  F is a good averaging cocycle. By Lemma 

4.4 and Theorem 4.5, AF is locally compact. Now, a locally compact group which 

is continuously embedded in R is either discrete or equal to R (e.g., [35], Theorem 

3.2.2). In the former case, it is countable, since it is separable, and in the latter 

case we know that  F is a coboundary. II 
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Thanks to Theorem 4.1 we have explicit examples of functions which are not 

good averaging cocycles. One now classical construction has been given by 

Osikawa ([27]) of a cocycle F such that AF is uncountable and which is not 

a coboundary. It is described in Aaronson's book ([1, w In this example the 

dynamical system (~, T,  #, T) is an odometer and the cocycle is positive. 

5. S o m e  links w i t h  the theory of  rea l  cocycles 

In this section, we describe some relations between the concept of regular 

cocycle, the concept of associated flow and the good averaging property. 

Let the space ~ • • be equipped with the infinite measure #| where A denotes 

the Lebesgue measure on R. Given a real cocycle F on ~t, the corresponding 

cylindrical flow TF is the skew product defined on ~ • R by 

TF(w, x) ---- (Tw, x + F(w)), 

and F is said to be ergodic if TF is ergodic. 

Following [36], a real number a is called an essen t ia l  va lue  of a cocycle F if, 

for all c > 0, for all B C T with #(B) > 0, there exists an integer n > 0 such that  

The set E(F) of essential values of F is a closed subgroup of ]R and it is known 

that F is ergodic if and only if E(F) = R. The cocycle F is called r e g u l a r  if it 

is cohomologous to a cocycle with values in the set of its essential values, that is 

if there exists a real measurable function G on ~t such that,  for #-almost all w, 

F(w) + G(w) - G(Tw) C E(F). In that  case, this new cocycle defines an ergodic 

extension of (~, T,  #, T) by E(F). 

PROPOSITION 5.1: Any regular real cocycle is a good averaging cocycle. 

Proof of Proposition 5.1: If ~ E AF, there exists a real measurable function Go 
such that  ae(Tw) = eF(w) + G0(w) mod 1; the function (w, x) ~+ e(Go(w) - ~x) 
is TF-invariant. 

If TF is ergodic, that is if E(F) = R, this implies that AF = {0}. 

If E(F) = aZ, with a E ]R and a # 0, then F is cohomologous to a cocycle F r, 

with values in aZ, which defines an ergodic extension of (~, T) by aZ. As in the 

above case, we conclude that AF = AF, ---- a - l Z .  

In the case where E(F) = {0}, the fact that the cocycle is regular means that  

it is a real coboundary, and the result follows from Corollary 2.3. | 
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Remark: If F is ergodic, since AF = {0}, we have moreover that  the sequence 

(1.1) converges to zero for every ~ r 0, for almost every w, hence the limit in the 

mean ergodic theorem along the random sequence (F(n)(w)) is a.s. the same as 

the limit in the usual ergodic theorem. 

Ergodicity of cocycles, in particular over irrational rotations, is a widely studied 

subject (e.g., [3], [4], [7], [10], [18], [20], [24], [26], [29, 30]). 

Non-ergodic real eocycles (for example, positive ones) have non-trivial asso- 

ciated flows, and the eigenvalues of this flow are connected with our previous 

discussion. Let us recall the definition of the associated flow, as it appears, for 

example, in [17] or [2]. On f~ x JR, the cylindrical flow TF commutes with the flow 

(7"t)t~R defined by translation on the second coordinate: Tt(W, X) = (W, X + t). We 

consider the a-algebra Z of TF-invariant measurable subsets of ~ z R and we con- 

sider on ]~ a probability measure v equivalent to the Lebesgue measure. The non- 

singular action of R given by the flow (Tt) on the measure space (~ x R, Z, # | y) 

is the flow associated to the cocycle F (this flow is also called "Mackey range"). 

If the cocycle F is non-negative, the associated flow is isomorphic to the special 

flow built over the base (f2, T,  #, T) under the function F.  If moreover F is 

integrable, this flow preserves a finite measure. 

The following result is well-known ([17]) but we will give here a short proof 

because it is central in our analysis. 

PROPOSITION 5.2: The set 2~rAF is the set of L~-eigenvalues of the associated 

flow. 

Proof of Proposition 5.2: Let 0 E AF. There exists a real measurable function 

G on ~ such that  0F  = G - G o T mod 1. The function h defined on f~ x R by 

h(w, x) = e(G(w) + Ox) is TF-invariant, thus it is Z-measurable. But we have 

h o Tt ---- e(Ot)h, which implies that  2tO is an eigenvalue of the associated flow. 

Conversely, if 2~r0 is an eigenvalue of the associated flow, then there exists a 

non-zero Z-measurable function h on f~ x R such that  h(w, x + t) = e(0t)h(w, x) 
a.e. The Z-measurability means h(Tw, x + F(w)) = h(w, x) a.e. These two 

equations yield h(w, x) = e(OF(w))h(Tw, x) a.e. For almost all x, this is true for 

#-almost all w, and we can choose x such that  it holds #-a.e. and the function 

h(-, x) is not #-almost everywhere zero. It  follows ~ E AF. | 

Since the set of eigenvalues of a finite measure-preserving system is at most 

countable, we deduce: 
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COROLLARY 5.3: / f  the associated flow preserves a finite measure equivalent to 

# | v on (~ • R, "Z), then F is a good averaging cocycle. 

As a particular case, we obtain that  if F is non-negative and integrable then 

it is a good averaging cocycle. Besides, if the cocycle F is integrable with non- 

zero mean then it is cohomologous to an integrable cocycle of constant sign (it is 

shown by Ko~,ergin in [21] among deeper results; see also [9] for a detailed proof). 

Since two cohomologous cocycles have the same group AF, we have: 

COROLLARY 5.4: Any  integrable function with non-zero mean is a good averag- 

ing cocycle. 

Note that two cohomologous cocycles also have isomorphic associated flows 

(and, in particular, if F is integrable with non-zero mean then the associated 

flow is isomorphic to a special flow preserving a finite measure). More generally, 

here is another direct consequence of Proposition 5.2. 

COROLLARY 5.5: / f  tWO coeycles have isomorphic associated flows and if  one of 

them is a good averaging cocycle, then so is the other one. 

This corollary implies that the good averaging property is preserved by orbit 

equivalence. It is also preserved by induction: for a measurable subset A of 

positive measure in f~, denoting by nA(W ) the first return time of w E A in A 

and by TA the induced transformation w ~-~ T '~A (w), we have that the cocycles 

F on (~, T) and FA: w ~ F(nA)(W) on (A, TA) have isomorphic associated flows 

(it can also be directly checked that AFA = AF). 

It is proved in [15], [16] (see also [2]) that,  up to an isomorphism, every non- 

singular, conservative, ergodic and free R-action is the associated flow of a recur- 

rent cocycle over an arbitrary ergodic aperiodic measure-preserving dynamical 

system. So a variety of examples of possible sets AF is known. 

Small modifications of the proof of Theorem 4.1 yield the following result which 

seems to be of general interest in the spectral theory of non-singular transforma- 

tions. The Polish topology of the eigenvalue group is defined in the same way 

as the topology of AF from the L2-topology on eigenfunctions, and when the 

transformation is conservative, the eigenvalue group cannot carry a full measure 

(see, e.g., [19]). 

THEOREM 5.6: Let S be an ergodic conservative non-singular automorphism 

or flow of a standard space (Y, B, t/), and let A be the eigenvalue group of S, 

equipped with its Polish topology. 
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Assume that there is a set of full measure Y~ in Y ,  and an eigenfunction selector 

~-~ go = g(O, ") on A, where g is a measurable function of modulus one on A • Y '  

such that, for any x c Y' ,  the function ~ ~+ g(O, x) is continuous on A. 

Then A is countable. 

6. I n d e p e n d e n t  i den t i ca l ly  distr ibuted processes 

THEOREM 6.1: I f  the process (F o T"),  defined on the probability space f~, is 

independent, then either 

F = 0 a.e. or 

there exists a # 0 such that F takes (a.s.) its values in a discrete subgroup aZ 

of the real line and OF = a - l Z  or 

F does not take its values in a discrete subgroup of•  and OF = {0}. 

COROLLARY 6.2: I f  the process (F o T n) is independent, then F is a good 

averaging cocycle. 

Proof of  Theorem 6.1: 

But 

Fix t~ E OF. We have 

N - 1  

N--+cx~ 
n=O 

E[e(OF <n))] = E[e(OF)] '~ 

so we have E[e(OF)] = 1 and thus OF E Z almost surely. 

Remarks: 

�9 If  the function F is integrable centered and if the stat ionary process asso- 

ciated is independent, the random walk (F  ('0) is recurrent and the cocycle 

F is regular. (See [37] for a description of the relationships between recur- 

rence of random walks and ergodicity of cocycles.) In this case Proposition 

5.1 applies 1. 

�9 The good averaging property can also be proved when the process (F o T n) 

has some kind of asymptotic  independence property. By way of example, 

using the spectral property of Perron-Frobenius operators, we can show 

that  the group AF is countable in the following cases: 

- (Ct, T) is a subshift of finite type, # is a Gibbs measure and F is Lipschitz. 

1 This remark has been communicated to us by J. Aaronson. 
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- ft is an interval, # is absolutely continuous, T is expanding and F has 

bounded variation. 

7 .  G a u s s i a n  p r o c e s s e s  

THEOREM 7.1: If  the process (F o T"),  defined on the probability space f~ is 

ergodic, Gaussian and centered, then either the set OF reduces to {0} or it is all 

the real line. 

COROLLARY 7.2: If  the process (F o T n) is Gaussian and ergvdic, then F is a 

good averaging cocycle. 

Proof of Theorem 7.1: Recall that an ergodic Gaussian process is necessary 

weak-mixing ([8, chap. 14, w This implies that there exists a subset E of N, 

of asymptotic density one (i.e., liminfN-~oo --~#(E A [0, N)) = 1) such that  the 

sequence (F o Tn)n6E goes weakly (in L2(#)) to zero. 

Let us suppose that 1 E OF, and show that F is a real coboundary (for the 

general case, replace F by OF). We have 

N - 1  N - 1  

lira 1 E [ l i m ~ N  E ] g-~oo N E[e(F("))] = E e(F (")) :/: O. 
n : 0  n : 0  

Since the random variable F (n) has a Gaussian distribution, we have 

E[e(F('~) )] = exp( -27r2 liE(")ll~). 

The Cesaro means of the sequence of positive numbers 

(exp(-277 liE(")Ih2)) 

do not go to zero; hence there exist e > 0 and a subset E'  of N, of positive 

asymptotic density such that, for any n E E' ,  

exp(-27r2LIF(")l[~) > e. 

The sequence (F(")),~E, is bounded in L2(#). Now, E A E'  has positive asymp- 
totic density, hence it is infinite. The sequence (F ('~) ] , is bounded in L 2 (#), 

] n 6 E n E  
and we can extract from it a subsequence (F(n))n6E ,, which converges weakly to 

a limit G in L 2. We write 

F = F ('~) - F (n) o T  + F o T ~ 

and we recall that, along the sequence E",  weak-lim F o T ~ = 0. We conclude 

that F - -  G -  G o T .  1 
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Remark: It is interesting to notice that the positive results obtained in the i.i.d. 

case and in the Gaussian case for the random mean ergodic theorem do not at 

all extend to the pointwise convergence. Indeed it is proved in [5] that if (a,,) is a 

sequence of real numbers linearly independent over Q, then it is universally bad 

for pointwise convergence, i.e., for any non-trivial probability measure-preserving 

flow (X, A, u, (Tt)t~) there exists a bounded measurable function f on X such 

that  (3.3) is not an almost everywhere convergent sequence. In our context this 

implies that if F has a continuous distribution and if the process (F  o T ~) is 

i.i.d, or Gaussian, then almost surely the sequence (F (n)) is universally bad for 

pointwise convergence. 

8. The random mean ergodic theorem for weakly mixing systems 

In this section we describe a construction of an integrable cocycle F which is 

not a good averaging cocycle, and which can be chosen with integer values. This 

construction is universal, in the sense that it takes place in an arbitrary dynamical 

system, and it allows us to show that the random mean ergodic theorem for mildly 

mixing transformations (Theorem 3.5) is not true for the class of weakly mixing 

transformations. 

THEOREM 8.1:  _For a n y  aperiodic and ergodic probability measure-preserving 

system (f~, T, #, T) there exists an integrable function F such that, for ahnost 

every aJ E ~, there exists a number 0 such that the sequence 

] N--1 

n : 0  

does not converge. 

THEOREM 8.2: For any aperiodic and ergodic probability measure-preserving 

system (~, T, It, T) there exists an integrable function F such that, for almost 

every w C ~, there exists a weakly mixing probability measure-preserving system 

(X, A, , ,  T) and f E L2(It) such that the sequence 

does not converge in L2(#). 

N - 1  

n~0 

In the proofs of these theorems we will use a lemma, which says that if a 

sequence (L~) of numbers grows sufficiently fast, then the random variables 
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0 ~ LnO, defined on the unit  interval wi th  uniform probabil i ty,  are a lmost  inde- 

pendent .  A proof  of this l e m m a  is pos tponed  to the end of the section. For any 

real number  x, we denote [Ix[I = 2~d(x, Z) where d(x, Z) is the usual distance 

from x to Z. 

LEMMA 8.3: For any sequence (en)=>o of positive real numbers, there exists a 

sequence (L~)n>_o of integers such that ,  for any sequence (a~),~>_o of real numbers, 

the set of real numbers 0 satisfying 

IIL,,O - ~.]1 ~ en (n ~ o), 

contains a Cantor set, hence an uncountable compact subset of IR. 

Proof of Theorem 8.1: We consider a t r iangular  a r ray  (L,~,~), n > 1, 0 < i < 2 n, 

of posit ive integers such tha t  for any E C {(n, i) E N 2 : n > 1, 0 _< i < 2n}, there 

exists 0 E • satisfying 

(n, i) ~ E ~ [ILn,,0ll < 2 -n,  

(n,i)  E E ~ HLn,,O- 4[ ] < 2-n.  

The  existence of such an ar ray  is ensured by L e m m a  8.3. 

For each n > 1, we consider a Rokhlin tower of height 4~h,~ which covers all 

the space fl except a par t  of measure  less than  2 - 'L  The  base of this tower 

is a set A,~ C T such tha t  TmA~,,O <_ m < 4nhn, are pairwise disjoint and 

# (U0<m<4~h= T m A n )  > 1 - 2 - ' L  The  sequence of posit ive integers (ha) 
] 

is 

assumed to satisfy the following conditions: 

CI:  hn >_ 2~; 

C2: 1 2 ~ n > 1  ~e>,~(h,~/h~) < 1; 

C3: ~ n > l ( 1 / h ~ )  maxo_<~<2~ L=,~ < +oc;  

C4: there exists ~t,~ C 7- such t ha t  # (~n )  > 1 - 2 - n  and, for all w C f~=, 

for all ~ = 1 , . . . ,  n - 1, for each set A which is a union of levels of the tower 

{TmA~ : 0 < m < 4the} and for all N > ha, 

N - 1  

N Z - , (A)  < 
2 - n .  

t=0 

The  existence of the sequence of heights (ha) and corresponding towers is ensured 

by an inductive construct ion (to have C4 we use the pointwise ergodic theorem 

and the Egorov theorem).  
63 We denote ~21 := Nn>7 ~,~ and we have #(~1)  > ~ "  
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We introduce a new numbering of the tower's levels: 

B'*(i,j ,  k) := T'*A'* 

if 

m = 2"*h'*i + hnj  + k, 

where 0 < i , j  < 2"* and 0 < k < hn. 

We define a function F'* on f~ by 

F'* = L,~,~ on Bn( i ,2 j ,  O) and B'*(i, 2j + l , h , ~ -  l) 
f o r 0 _ < i < 2  n, 0 ~ j < 2  n - l ,  

F,~ = -L'*, ,  on B'*(i, 2 j +  1,0) and B'*(i,2j, hn - 1) 
f o r 0 _ < i < 2 ' * ,  0 < j < 2  "*-1 , 

F'* = 0 elsewhere. 

This function F'* is an additive coboundary; indeed, 

F'* = G'* o T - G'*, 

where G'* is defined by 

G,~ = L'*,~ on B'*(i, 2j, k) for 0 _< i < 2"*, 0 _< j < 2 '*-1 , 0 < k < h'*, 
G'* =-L ,~ , i  onB'*(i ,  2 j + l , k )  f o r 0 _ < i < 2 " * ,  0 < j < 2  '~-1, 0 < k < h ' * ,  
G'* -- 0 elsewhere. 

We have 

= 2 L,~,i#(A'*) <_ ~ 2'~+lLn,i 4 "* 
i ~ 2  n z(2 n 

and C3 implies that  

E[IF'* I] < + ~ .  
"*)1 

Hence the series :~-~n>7 Fn converges in L 1 and also almost everywhere. Denote 

its sum by F.  

We denote by ~ a part  of the tower [Jm TmA'* (we will remove some levels). 

To be precise, we define 

E'* := { ( i , j , k ) : O  < i < 2n,0 _<j < 2 '~ - 2 , 0  < k < h,~} 

and 

~ := U B'*(i , j ,k) .  
( i , 3 , k ) C E , ,  

We have # E ~  _< 2"*+lhn + 4 n, so using C1, 

#(f~t ) >_ 1 -  2 -n  - # E ~  . #(An) _> 1 - 2 -'*+2 . 
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15 Let w �9 ~2. For each n > 7 We define f~2 := N~_>7 ~ and we have #(f~2) > Y~" 

there exists a unique (i~, j~,  k~) = (i~,n, j~,n, k~,,~) such that  

w �9 B,(io, , jo~,k~).  

Putt ing E := {(n, i~,n) : n �9 N} we obtain that  there exists 0 = O(w) �9 ]~ such 

that,  for each n > 7, 

f i # i~ ~ []L.#Oll < 2 -n 
(s.1) 

IIL.,,~O- �88 < 2-~.  

Let us suppose that  jw is even. Since w E ~2, kw > 0 and hence Gn(w) = Ln ,~ .  

There exists an integer c = c(n, w) such that  0 < c < hn and 

Gn(Ttw)  = L,~,~. for 0 < t < c, 
Gn(Ttw)  = -L~#~  for e < t < e + h,~, 
G,~(Ttw) = L, , ,~ for e + hn < t < c + 2h~. 

(Here we used the fact that  w C f~2 implies that  j~ < 2 n - -  3 . )  

If j~ is odd, we have the same property providing that  we replace Ln,i by -L~#. 

Note that  if Gn(w I) = iL,~,,~ then 

le(OCn(wl)) - e ( + ~ )  I < 2 -=,  

and if Gn (w') # 't-Ln,i~ then 

[e(OGn(J)) - 1I < 2 -" .  

We have 

c+hn-1 ~ )  c+hn-1  

t=O 

< E 2 + 1 +  2 -n  
0<t<c t= 1 

< 2 e +  1 + (h,, - 1)2 -n  < 2 e +  ( e +  hn)21-n 

and, by similar arguments, 

E e(OG'~(Ttw)) - e <_ c2 -n  + 1 + (h .  - 1)2 + 1 + (hn - 1)2-"  
t=O 

< 2h,  + (c + 2hn)2-" .  
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These inequalities imply that 

c 1 c+h,-1 1 c+2h.- le(0Gn(Ttw))  + hn ~-, e(Oa"(T~)) ~ > 
t=o c + 2hn t=o 

2 2c 21_ n 2hn 2 -'~ -- 2h2 - 21-n - 2-n 
c+ hn c+ 2hn (c + h,,)(c + 2h~) 

1 _ 21_ n > ~ - 2 -" ,  

because c < hn. Hence (remembering that n _> 7) we obtain 

~o~I'~ 1 ~+h.-1 1 ~+=h.-1 e(OGn(Ttw)) 1 
+ hn E e(OGn(Ttw)) e+2hn  E -> 4" c t=0 t=0 

We have 

7 
(8.3) ~t(a  1 ['1 a 2) > g 

and let us suppose now that w C ft 1 n f t  2. For positive integers g we define 

lQ,~ := {w' e a :  Ge(w') # Le,~,l}. 

Since w E f~l, for any N > h,~ and any g < n, 

1 N - 1  
E )~Vt,~ (TtW) ~ ]~(Vg,w) -~- 2-~  ~ 21-s 
t=0 

Indeed, ft\Ve,~ is a union of levels of the g's tower and we apply C4. Furthermore, 

for any w' @ ~,~,  we have I[OGr < 2 -e. This will allow us to replace G ,  by 

c+ h. ~ e o a~(T~) c+ h~ }2 
t=0 = t=0 

1 c+hn-ln-1 

- c + h ~  t=0 g=7 
1 c + h , ~ - I  n - 1  

< - -  ~ ~(2~v,~(T~)+2 -~) 
- -  c + h n  t=0 t=7 

n--I 
I 1 

<- Z ( 2 2 - ~  + 2-e) <- g + 64" 

Y~e<n Ge in (8.2). Indeed, 
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The same estimate holds if we replace c + hn by c + 2hn. Therefore, in view of 

(8.2), 

1 c+h,~- I n 1 

t=O ~ ~=7 " t=O ~=7 

Let us show now that  we can choose w such that,  for all t < c + 2hn and all 

g > n, F~(w) = O. We have 

and, for any n >_ 1, 

2 
#(F~ # O) S .-- 

~n 

2 

We denote by ~'~3 the set ofw's  such that,  for any n > 1, for g > n and 0 _< t < 3hn, 

F~(Ttw) = 0. We have 

2 
] t ( a  3) ~__ 1 -- Z 3 h n E  h~" 

n > l  ~>n 

It  follows from C2 and (8.3) that  

]~(~1 A ~2 r~ ~ 3 )  > 0. 

If w E f t  3, n > 7 and N > 3hn, then 

N-~ 1 ~ 1  ( ~ g ( t ) ( w )  ) 
1 e(OF(t)(w)) ~ e 0 

N t=o t=o ~=7 

- -  e 0 G~(Ttw . = e - 0 G~(w N 

In view of (8.2) this implies that for any w E •t N Q 2 r~ ~3 and any n _> 7, 

i c+h.--1 c+2hn-1 
1 l 1 

(8.5) c + h n  > -  t=o c + 2hn t=0 - 16" 

Consequently, for any w E ~1 n ~2 A gt 3 the sequence 

(,) 

does not converge. 

converge is T-invariant. By ergodicity of T, the result follows. 

i N-1 
E e(OF(t)(w)) 
t=O 

But it is clear that  the set of w's such that  (,) does not 
| 
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Proof of Theorem 8.2: This proof requires only a small modification of the proof 

of Theorem 8.1. By Lemma 8.3 the family (Ln,i), n >_ 1, 0 < i < 2 n can be chosen 

so that,  for each w C f~2, conditions (8.1) are satisfied by all the numbers 0 in an 

uncountable compact subset K~o of "2. We fix w E f~l N ~2 2 N [2 3. For any n >_ 7 

and any 0 E K~o the condition (8.5) is fulfilled. Let us denote K~ := K~U ( - K ~ ) .  

For any n _> 7 and any 0 C K~ the condition (8.5) is fulfilled. There exists a 

continuous Borel probability measure a~ whose support is contained in K~ and 

such that for any measurable subset A of "/1", a~(A) = ao~(-A). We consider now 

the Gaussian dynamical system (X, A, v, 7) of spectral measure ~rw (see [8]). The 

spectral measure being continuous this Gaussian dynamical system is weakly 

mixing, and in the Gaussian subspace of L2(v) we can find f whose spectral 

measure a I equals a~. By (8.5) and the spectral theorem we have, for any n > 7, 

c+hn-I cA-2hn -1 2 1 1 
c-k hn ~= f ~ TF(')(~) c + 2hn Et=o : ~ TF(')(~) 

fV 1 cq-hn-1 C +1 c+2h.-1 e(OF(t)(w)) 2 
t=o 2hn t=o 

da~(O) 

C c-}-hn - 1  c-t-2hn--1 2 1 

> i n f  1 t ~  0 1 t ~  0 --O~K~ ~-hn e(OF(t)(w)) c q ~ - 2 h n  e(OF(t)(w)) >- " 

Consequently, the sequence 

N - 1  
1 TF(~) 

does not converge in L2(v). I 

Proof of Lemma 8.3: We suppose that for any n _> 0, e,  < } and we fix a 

sequence (L, )  such that 

L 0 = l  and L n >  3Ln-1 ( n > l ) .  
-- 2 6 n - 1  

Let us prove by induction that there exists a decreasing sequence of compact 

subsets (Kn)n>o in R such that each Kn is a union of 2 n intervals pairwise 

disjoint of length 2en/Ln and satisfies: 

OeKn~i iLkO- -ak l l<_ek ,  k = O , l , . . . , n .  

We define K0 := [ s 0 - e o ,  a 0 + c o ] .  Now we fix n _> 0 and we suppose that 

Ko D K1 D .-.  Kn are given and satisfy the announced property. Let I be an 
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interval of length 2en/Ln. Since Ln+l _> 3Ln/2en, {Ln+~O : 0 E I} contains an 

interval of length 3 and {0 C I : HLn+I0 - an+ill -~ en+l} contains two disjoint 

closed intervals of length 2en+l/Ln+l. This construction can be done in each of 

the 2 n intervals whose union is Kn, and we obtain 2 n+l disjoint closed intervals 

of length 2en+l/Ln+~ whose union is denote Kn+I. If 0 E Kn+l and k _~ n + 1 

then IlLkO - (~kll <- ek. This completes the induction construction. 

The set K := [~nKn is a Cantor set and, if 0 C K,  then for any n > 0, 

IILnO - c~n[] _< en. I 

9. A p p e n d i x  

The aim of this appendix is the justification of Remark 3.2. A real sequence 

(an)n>O is called e rgod i c  if it is a good averaging sequence and if the limit of 

(3.1) is zero for any non-zero number 0; so, by Weyl's criterion, the real sequence 

(an) is ergodic if and only if its normal set is R\{0}, that is to say, for any non- 

zero number 0, the sequence (anO) is uniformly distributed rood 1. The sequence 

an = x/~ is an example of an ergodic sequence. 

The arguments of the proof of Proposition 3.1 lead directly to the following 

result. 

PROPOSITION 9.1: Let (an) be an ergodic sequence, (X, ,4, ~, (vt)te~) a measure 
preserving flow and p E [1, +oc). Denote by 5[ the ~-algebra of ('rt)-invariant 
elements of ~4. Then: 

(i) for any f C LP(u), the limit of sequence (3.3) equals the conditional 
expectation E~ [f [Z], 

(ii) for any A C ,4, u(A) > O, there exists n c N such that u(A M T_anA) 
>0. 

Following ideas that  Furstenberg developed in the integer-valued sequence case 

we show now that  the recurrence property stated in the last Proposition gives 

rise to a result in combinatorial number theory. Let us recall the definition of 

Banach density. If E is a subset of R, its u p p e r  B a n a c h  d e n s i t y  is defined as 

1 
lira sup sup TIE • [M, M + N)I 

N-~oc M 

where l" I denotes the inner Lebesgue measure. 

PROPOSITION 9.2: Let R be a Poincar6 recurrence set of real numbers, i.e. a sub- 

set of ]R such that for any probability measure-preserving flow (X, A, u, (rt)teR) 
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and any A �9 A with u(A) > 0, there exists r �9 R such that u(A n r - rA)  > O. 

Then for any E C R of non-zero upper Banach density, we have 

E - E n R # O .  

Proo[ of Proposition 9.2: In the definition of Banach  density we have used the 

inner measure,  so it is easy to see tha t  if E has non-zero upper  Banach  density, 

then E contains a closed set of non-zero upper  Banach  density. Therefore  we can 

suppose,  wi thout  loss of generality, t ha t  E is closed. We define f :  ~ > [0, 1] by 

f ( x )  = (1 - d(x, E)) + 

(where d(x, E) denotes the usual distance between x and E) .  

On the space d of continuous functions from ]R into [0, 1], equipped with the 

topology of uniform convergence on compact  subsets, we denote by r the act ion 

of R by translat ion:  if g �9 C then (rtg)(x) = g(x + t). 

We denote by X the closure of the orbit  of f ,  i.e., 

x :=  : t �9 s }  = {f( .  + t ) :  t �9 a} .  

Since f is uniformly continuous, by the Arzela Ascoli theorem,  X is a compac t  

metr ic  space. 

By the s tanding assumpt ion  of non-zero density, we know tha t  there exist 5 > 0 

and  two real sequences (o/~), (~,~) such tha t  lim,~_+~(fi,~ - O/,,) = + ~  and, for 

n > l ,  
1 

- - I E  n [o/,.,, f,.,]l >5. ~ n - -  O / n  

We define a sequence (un) of probabi l i ty  measures  on X by 

- ~(Tt( f ))dt  

for any continuous function (I> on X.  We extract  from (vn) a weakly convergent 

subsequence (v~k) and we denote by v its limit. From the fact tha t  fin - O/n --+ 

+oc ,  we deduce tha t  v is T-invariant. We want  now to apply  the recurrence 

p roper ty  along R to the probabi l i ty  measure-preserving flow (X, u, T). 

Fix e > 0. Sets A := {g E X :  g(0) -- 1} and {g C X :  g(0) < 1 - e} are closed 

disjoint subsets of X.  Hence there exists a continuous function <I> f rom X into 

[0, 1] such tha t  
1 if g(0) = 1; 

(I)(g)= 0 i fg(O)_<l-e .  
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We have u(~)  = l im,__~ ",~k (ff~) and 

1 ~ 
- - -  ~( f ("  + t))dt 

1 ~ 1E(t)dt, 

because, if t E E,  then f ( 0  + t) = 1 and ~ ( f ( .  + t)) = 1. Therefore, for each 

n, , n ( e )  > 6 so . ( e )  > 6. This implies tha t  u({g e X : g(0) _> 1 - e}) > 5 

and, letting e go to zero, we obtain u(A) >_ 5. Now we can use the recurrence 

proper ty  in the dynamical  system (X, u, T), and we have: there exists r E R such 

tha t  u(A n r - r (A) )  > 0, hence there exists r �9 R and g �9 X such tha t  g(0) = 1 

and g(r) = 1. By definition of X such a function g is a limit of a sequence 

(f(-  + tn)). Thus we have proved the existence of r �9 R and of a sequence (tn) 

of real numbers  such tha t  

lim f ( t n ) - -  lim f ( r §  
n - ~ o o  n - - ~  (:x3 

By the definition of f this means exactly tha t  r C E - E.  I 
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